Mekanik, kimyasal ve hibrit yüzey aşındırma işlemlerinin AA7075 alüminyum alaşımının yüzey enerjisine etkisi

Yapıştırma bağlantı dayanımı, malzeme yüzeylerinin birbirleri ile etkileşimlerine ve numunelerin yüzey morfolojilerine bağlı olarak değişiklik gösterdiği bilinmektedir. İyi bir yapışmanın elde edilmesi için yeterli yüzey koşulu gerekmektedir. Yüzey morfolojisi, pürüzlülük değerleri ve serbest yüzey enerji (SYE) değerleri bağlantı dayanımına nasıl etki ettiği ve bu değerlerin kendi arasındaki ilişkileri önem arz etmektedir. Bu çalışmanın amacı, kimyasal dağlama, kumlama ve hem kumlama hem de kimyasal dağlama ile hibrit aşındırılmış yüzeylerin, Yüzey morfolojisi, pürüzlülük değerleri, temas açısı ve SYE değerleri arasındaki ilişki araştırılmıştır. Farklı tekniklerle aşındırılan yüzeylerin farklı yüzey morfolojileri oluşmuştur. Farklı yüzey morfolojilerine sahip numunelerin yüzeyine farklı sıvılar kullanılarak temas açı değerleri tespit edilmiştir. Ayrıca Aşındırılan AA7075 numunelerin yüzey morfolojisi taramalı elektron mikroskobu (SEM) ve 3D profilometre ile analiz edilmiş, yüzey pürüzlülük değerleri belirlenmiştir. Farklı tekniklerle aşındırılan yüzeylerin farklı yüzey morfolojileri oluşmuştur. Yüzeylerin, SYE ve temas açısı değerleri ise yüzeyin ne kadar ıslatılabilir olduğu hakkında bize bilgi verir. Bu sebepten AA7075 yüzeylerinin yüzey pürüzlülük ve SYE değerleri kıyaslanmış ve yüzeylerin mekanik, termodinamik ilişkileri çalışmada ortaya konulmuştur. SYE hesaplamalarında OWRK ve Zisman metodu kullanılmış ve iki yöntemden elde edilen değerlerin birbiri ile tutarlı olduğu görülmüştür. En yüksek SYE değerleri kumlama+0,5M NaOH ve kumlama+1M NaOH olan hibrit aşındırılan yüzeylerde elde edilmiştir. Her bir yüzey işleminde yüzey pürüzlülük değerleri farklı değerler almıştır. Sonuç olarak yüzey pürüzlülük değerleri ve SYE arasında doğrudan bir ilişki olmadığı görülmüştür.

Effect of Mechanical, Chemical and Hybrid Surface Etching on Surface Energy of AA7075 Aluminum Alloy

Adhesion it is known that the bond strength varies depending on the interaction of the material surfaces with each other and the surface morphology of the samples. Sufficient surface conditions are required to achieve good adhesion. It is important how the surface morphology, roughness values and free surface energy (SFE) values affect the bond strength and the relationships between these values. The aim of this study was to investigate the relationship between surface morphology, roughness values, contact angle and SFE values of hybrid etched surfaces with chemical etching, sandblasting and both sandblasting and chemical etching. Different surface morphologies were formed of the surfaces etched with different techniques. Contact angle values were determined by using different liquids on the surface of the samples with different surface morphologies. In addition, the surface morphology of the etched AA7075 samples was analyzed by scanning electron microscope (SEM) and 3D profilometer, and surface roughness values were determined.Different surface morphologies of the etched surfaces were formed by different techniques. The SFE values of the surfaces give us information about how wettable the surface is. For this reason, the surface roughness andn SFE values of AA7075 surfaces were compared and the mechanical and thermodynamic relations of the surfaces were revealed in the study. OWRK and Zisman methods were used in the calculations of SFE and it was seen that the values obtained from the two methods were consistent with each other. The highest SFE values were obtained on hybrid etched surfaces with sandblasting+0.5M NaOH and sandblasting+1M NaOH. Surface roughness values took different values in each surface treatment. As a result, it is seen that there is no direct relationship between surface roughness values and SFE.

___

  • Akpinar, S. & Akpinar, I. A. (2019). Effect of nanostructured reinforcement of adhesive on thermal cycling performance of a single-lap joint with composite adherends. Composites Part B: Engineering, 175, 107106. https://doi.org/10.1016/j.compositesb.2019.107106
  • Annamalai, M., Gopinadhan, K., Han, S. A., Saha, S., Park, H. J., Cho, E. B., Kumar, B., Patra, A., Kim, S.-W. & Venkatesan, T. (2016). Surface energy and wettability of van der waals structures. Nanoscale, 8(10), 5764-5770. https://doi.org/10.1039/C5NR06705G
  • Aydin, M. D., Akpinar, S., Özel, A. & Erdoğan, S. (2015). Kayma yüküne maruz yapıştırma bağlantılarından yapısal yapıştırıcıların mekanik özelliklerinin belirlenmesi. Mühendis ve Makina, 56(668), 48-55. https://dergipark.org.tr/tr/pub/muhendismakina/issue/54338/736175
  • Dikici, T. (2019). Asidik dağlama prosesinde farklı HCl/H2SO4 oranının titanyumun yüzey morfolojisi ve pürüzlülüğüne etkisi. DÜMF Mühendislik Dergisi, 10(3), 999-1007. https://doi.org/10.24012/dumf.450560
  • Fathi Azarbayjani, A., Jouyban, A. & Chan, S. Y. (2009). Impact of surface tension in pharmaceutical sciences. Journal of Pharmacy & Pharmaceutical Sciences, 12(2), 218. https://doi.org/10.18433/J32P40
  • Fotakis, C., Zorba, V., Stratakis, E., Athanassiou, A., Tzanetakis, P., Zergioti, I., Papagoglou, D. G., Sambani, K., Filippidis, G., Farsari, M., Pouli, V., Bounos, G. & Georgiou, S. (2007). Novel aspects of materials processing by ultrafast lasers: from electronic to biological and cultural heritage applications. Journal of Physics: Conference Series, 59, 266-272. https://doi.org/10.1088/1742-6596/59/1/056
  • Fu, J., Shi, L., Zhang, D., Zhong, Q. & Chen, Y. (2010). Effect of nanoparticles on the performance of thermally conductive epoxy adhesives. Polymer Engineering & Science, 50(9), 1809-1819. https://doi.org/10.1002/pen.21705
  • Güleç, H. A., Sarıogˇlu, K. & Mutlu, M. (2006). Modification of food contacting surfaces by plasma polymerisation technique. Part I: Determination of hydrophilicity, hydrophobicity and surface free energy by contact angle method. Journal of Food Engineering, 75(2), 187-195. https://doi.org/10.1016/j.jfoodeng.2005.04.007
  • Han, B., Liang, S., Wang, B., Zheng, J., Xie, X., Xiao, K., Wang, X. & Huang, X. (2019). Simultaneous determination of surface energy and roughness of dense membranes by a modified contact angle method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 562, 370-376. https://doi.org/10.1016/j.colsurfa.2018.11.059
  • Hu, Y., Yuan, B., Cheng, F. & Hu, X. (2019). NaOH etching and resin pre-coating treatments for stronger adhesive bonding between CFRP and aluminium alloy. Composites Part B: Engineering, 178, 107478. https://doi.org/10.1016/j.compositesb.2019.107478
  • Kim, J. K., Kim, H. S. & Lee, D. G. (2003). Investigation of optimal surface treatments for carbon/epoxy composite adhesive joints. Journal of Adhesion Science and Technology, 17(3), 329-352. https://doi.org/10.1163/156856103762864651
  • Kwon, J. W. & Lee, D. G. (2000). The effects of surface roughness and bond thickness on the fatigue life of adhesively bonded tubular single lap joints. Journal of Adhesion Science and Technology, 14(8), 1085-1102. https://doi.org/10.1163/156856100743095
  • Mansourian-Tabaei, M., Jafari, S. H. & Khonakdar, H. A. (2014). Lap shear strength and thermal stability of diglycidyl ether of bisphenol a/epoxy novolac adhesives with nanoreinforcing fillers. Journal of Applied Polymer Science, 131(6). https://doi.org/10.1002/app.40017
  • Martínez-Landeros, V. H., Vargas-Islas, S. Y., Cruz-González, C. E., Barrera, S., Mourtazov, K. & Ramírez-Bon, R. (2019). Studies on the influence of surface treatment type, in the effectiveness of structural adhesive bonding, for carbon fiber reinforced composites. Journal of Manufacturing Processes, 39, 160-166. https://doi.org/10.1016/j.jmapro.2019.02.014 Narbon, J. J., Moreno-Díaz, C. & Arenas, J. M. (2019a). Influence of surface treatment on the surface energy of an aluminium substrate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 560, 323-329. https://doi.org/10.1016/j.colsurfa.2018.09.010
  • Narbon, J. J., Moreno-Díaz, C. & Arenas, J. M. (2019b). Influence of surface treatment on the surface energy of an aluminium substrate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 560, 323-329. https://doi.org/10.1016/j.colsurfa.2018.09.010
  • Purabgola, A., Rastogi, S., Sharma, G. & Kandasubramanian, B. (2020). Surface preparation for structural adhesive joints. Içinde Structural Adhesive Joints (ss. 1-34). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119737322.ch1
  • Rudawska, A. & Jacniacka, E. (2009). Analysis for determining surface free energy uncertainty by the Owen–Wendt method. International Journal of Adhesion and Adhesives, 29(4), 451-457. https://doi.org/10.1016/j.ijadhadh.2008.09.008
  • Rudawska, A. & Jacniacka, E. (2018). Evaluating uncertainty of surface free energy measurement by the van Oss-Chaudhury-Good method. International Journal of Adhesion and Adhesives, 82, 139-145. https://doi.org/10.1016/j.ijadhadh.2018.01.006
  • Sun, Z., Shi, S., Hu, X., Guo, X., Chen, J., Chen, H. (2015). Short-aramid-fiber toughening of epoxy adhesive joint between carbon fiber composites and metal substrates with different surface morphology. Composites Part B: Engineering, 77, 38-45. https://doi.org/10.1016/j.compositesb.2015.03.010
  • Wan, H., Lin, J. & Min, J. (2018). Effect of laser ablation treatment on corrosion resistance of adhesive-bonded Al alloy joints. Surface and Coatings Technology, 345, 13-21. https://doi.org/10.1016/j.surfcoat.2018.03.087
  • What is Surface Energy? Calculation Models and More Explained. (t.y.). Ossila. Geliş tarihi 02 Mart 2022, gönderen https://www.ossila.com/pages/a-guide-to-surface-energy
  • Zhu, C., Wan, H., Min, J., Mei, Y., Lin, J., Carlson, B. E. & Maddela, S. (2019). Application of pulsed yb: fiber laser to surface treatment of Al alloys for improved adhesive bonded performance. Optics and Lasers in Engineering, 119, 65-76. https://doi.org/10.1016/j.optlaseng.2019.03.017