HTS-PMG Dizilimlerinin Kritik Akım ve Tuzaklanan Akı Özelliklerinin Nümerik Olarak İncelenmesi

Yüksek sıcaklık süperiletkenleri (HTS) içinde indüklenen akım ve tuzaklanan akı dağılımının belirlenmesi ve böylece Maglev sistemlerinin tasarımının optimize edilmesi için Maglev sistemlerinin elektromanyetik davranışı belirlenmelidir. Bu çalışmada, ilk olarak COMSOL Multiphysics paket programının AC/DC Modülündeki manyeto-statik çözüm kullanılarak tek-PM ve çift-PM manyetik kılavuzlama yollarının (PMG) manyetik akı yoğunluğu dağılımlarını sayısal olarak elde edildi. Daha sonra H-formülasyonu kullanarak COMSOL'daki Kısmi Diferansiyel Denklem (PDE) modu ile homojen olmayan manyetik alan altında HTS içindeki tuzaklanan manyetik akı ve indüklenen akı belirlendi. Bu çalışmada elde edilen sayısal sonuçlar, farklı PMG konfigürasyonlarının çeşitli manyetik alan karakteristiklerine sahip olduğunu ve bu durumun Maglev sistemindeki HTS'nin manyetik ve süper akım özelliklerini iyileştirebileceğini göstermiştir.

Numerical Investigation of the Critical Current and Trapped Flux Properties of the HTS-PMG Arrangements

The electromagnetic behaviour of the Maglev systems should be predicted to figure out the induced current and trapped flux distribution inside the high temperature superconductors (HTS) and thus to optimize the design of Maglev systems. In the present study, firstly we have obtained magnetic flux density distributions of single-PM and double-PM permanent magnetic guideways (PMGs) numerically by using magneto-static solution in AC/DC Module in COMSOL Multiphysics package. Then we have determined the trapped magnetic flux and induced current inside the HTS under the non-uniform magnetic field via the Partial Differential Equation (PDE) Mode in COMSOL by using H-formulation. Obtained numerical results in this study showed that different PMG configurations have various magnetic field characteristic and this situation can improve the magnetic and supercurrent properties of the HTS in Maglev system.

___

  • Abdioglu, M., Ozturk, K., Gedikli, H., Ekici, M. and Cansiz, A. 2015. Levitation and Guidance Force Efficiencies of Bulk YBCO for Different Permanent Magnetic Guideways. Journal of Alloys and Compounds. 630, 260–265.
  • Ainslie, M. D. and Fujishiro, H. 2015. Modelling of Bulk Superconductor Magnetization. Superconductor Science and Technology, 28, 053002 (20pp).
  • Basaran, S. and Sivrioglu, S. 2017. Radial Stiffness Improvement of a Flywheel System Using Multi-Surface Superconducting Levitation. Superconductor Science and Technology, 30, 035008 (12pp).
  • Deng, Z., Zhang, W., Zheng, J., Wang, B., Ren, Y., Zheng, X. and Zhang, J., 2017. A High-Temperature Superconducting Maglev-Evacuated Tube Transport (HTS Maglev-ETT) Test System. IEEE Transactions on Applied Superconductivity, 27 (6) 3602008 (8pp).
  • Dias, D. H. N., Motta, E. S., Sotelo, G.G. and de Andrade Jr., R. 2010. Experimental Validation of Field Cooling Simulations for Linear Superconducting Magnetic Bearings. Superconductor Science and Technology, 23, 075013 (6pp).
  • Güner, S. B., Savaşkan, B., Öztürk, K., Çelik, Ş., Aksoy, C., Karaboğa, F., Taylan Koparan, E. and Yanmaz, E. 2019. Investigation on Superconducting and Magnetic Levitation Force Behaviour of Excess Mg Doped-Bulk MgB2 Superconductors. Cryogenics 101, 131–136.
  • Hong, Z., Campbell, A. M. and Coombs, T. A. 2006. Numerical Solution of Critical State in Superconductivity by Finite Element Software. Superconductor Science and Technology, 19, 1246–1252.
  • Hull, J. R. and Strasik, M. 2010. Concepts for Using Trapped-Flux Bulk High-Temperature Superconductor in Motors and Generators. Superconductor Science and Technology, 23, 124005 (7pp).
  • Kovalev, K. L., Verzhbitsky, L. G., Kozub, S. S., Penkin, V. T., Larionov, A. E., Modestov, K. A., Ivanov, N. S., Tulinova, E. E. and Dubensky, A.A. 2016. Brushless Superconducting Synchronous Generator with Claw-Shaped Poles and Permanent Magnets. IEEE Transactions on Applied Superconductivity., 26 (3), 5203204 (4pp).
  • Kusada, S., Igarashi, M., Nemoto, K., Okutomi, T., Hirano, S., Kuwano, K., Tominaga, T., Terai, M., Kuriyama, T., Tasaki, K., Tosaka, T., Marukawa, K., Hanai, S., Yamashita, T., Yanase, Y., Nakao, H. and Yamaji, M., 2007. The Project Overview of the HTS Magnet for Superconducting Maglev. IEEE Transactions on Applied Superconductivity, 17 (2), 2111-2116.
  • Masson, P. J. and Luongo, C. A. 2005. High Power Density Superconducting Motor for All-Electric Aircraft Propulsion. IEEE Transactions on Applied Superconductivity, 15 (2), 2226-2229.
  • Minervini, J., Parizh, M. and Schippers, M. 2018. Recent Advances in Superconducting Magnets for MRI and Hadron Radiotherapy: An Introduction to ‘FOCUS on Superconducting Magnets for Hadron Therapy and MRI’ Superconductor Science and Technology. 31, 030301 (4pp).
  • Moon, F. C. 1994. Superconducting Levitation, New York: Wiley.
  • Navau, C., Del-Valle, N. and Sanchez, A. 2013. Macroscopic Modeling of Magnetization and Levitation of Hard Type-II Superconductors: The Critical-State Model. IEEE Transactions on Applied Superconductivity, 23 (1), 8201023 (23 pp).
  • Ozturk, K., Guner, S. B., Abdioglu, M., Demirci, M., Celik, S. and Cansiz, A. 2019. An Analysis on the Relation Between the Seed Distance and Vertical Levitation Force for the Multi-Seeded YBCO Using the Modified Advanced Frozen Image (MAFI) and Experimental Methods. Journal of Alloys and Compounds, 805, 1208–1216.
  • Ozturk, K., Patel, A. and Glowacki, B. A. 2012. A Numerical Study to Investigate Magnetization, Current Density and Trapped Field Properties of Doped-Sm123 Bulk Superconductor Under Different Magnetic Fields. Physica Status Solidi A, 209 (12), 2558–2564.
  • Patel, A., Hopkins, S. C., Baskys, A., Kalitka, V., Molodyk, A. and Glowacki, B. A. 2015. Magnetic Levitation Using High Temperature Superconducting Pancake Coils as Composite Bulk Cylinders. Superconductor Science and Technology, 28, 115007 (10pp).
  • Quéval, L., Liu, K., Yang, W., Zermeño, V. M. R. and Ma, G. 2018. Superconducting magnetic Bearings Simulation Using an H-formulation Finite Element Model. Superconductor Science and Technology, 31, 084001 (14pp).
  • Ruiz-Alonso, D., Coombs, T. A. and Campbell, A. M. 2004. Numerical Analysis of High-Temperature Superconductors With the Critical-State Model. IEEE Transactions on Applied Superconductivity, 14 (4), 2053-2063.
  • Sass, F., Sotelo, G. G., de Andrade Jr., R. and Sirois, F. 2015. H-formulation for simulating levitation forces acting on HTS Bulks and Stacks of 2G Coated Conductors. Superconductor Science and Technology, 28, 125012 (12pp).
  • Sotelo, G. G., de Andrade Jr., R. and Ferreira, A. C. 2009. Test and Simulation of Superconducting Magnetic Bearings. IEEE Transactions on Applied Superconductivity, 19 (3), 2083-2086.
  • Sotelo, G. G., R. de Oliveira, A. H., Costa, F. S., Dias, D. H. N., de Andrade, Jr, R. and Stephan, R. M. 2015. A Full Scale Superconducting Magnetic Levitation (MagLev) Vehicle Operational Line. IEEE Transactions on Applied Superconductivity, 25 (3) 3601005 (5pp).
  • Wang, J., Wang, S., Zeng, Y., Huang, H., Luo, F., Xu, Z., Tang, Q., Lin, G., Zhang, C., Ren, Z., Zhao, G., Zhu, D., Wang, S., Jiang, H., Zhu, M., Deng, C., Hu, P., Li, C., Liu, F., Lian, J., Wang, X., Wang, L., Shen, X. and Dong, X. 2002. The First Man-Loading High Temperature Superconducting Maglev Test Vehicle in the World. Physica C 378–381, 809–814.
  • Werfel, F. N., Floegel-Delor, U., Rothfeld, R., Riedel, T., Goebel, B., Wippich, D. and Schirrmeister, P. 2012. Superconductor Bearings, Flywheels and Transportation. Superconductor Science and Technology, 25, 014007 (16pp).
  • Yamamoto, S., Konii, K., Tanabe, H., Yokoyama, S., Matsuda, T. and Yamada, T. 2014. Super-Stable Superconducting MRI Magnet Operating for 25 Years. IEEE Transactions on Applied Superconductivity, 24 (3), 4400604 (4pp).
  • Yamasaki, H. and Mawatari, Y. 2000. Current–voltage characteristics and flux creep in melt-textured YBa2Cu3O7-x. Superconductor Science and Technology, 13, 202–208. Zhai, W. Shi, Y. H., Durrell, J. H., Dennis, A. R., Rutter, N. A., Troughton, S. C., Speller, S. C. and Cardwell, D. A. 2013. The Processing and Properties of Single Grain Y–Ba–Cu–O Fabricated From Graded Precursor Powders. Superconductor Science and Technology, 26, 125021 (11pp).
  • Zhang, M. and Coombs, T. A. 2012. 3D Modeling of High-Tc Superconductors by Finite Element Software. Superconductor Science and Technology, 25, 015009 (7pp). Zheng, X. and Yang, Y. 2007. Transition Cooling Height of High-Temperature Superconductor Levitation System. IEEE Transactions on Applied Superconductivity, 17 (4), 3862-3866.
  • Zou, J., Ainslie, M. D., Hu, D., Zhai, W., Devendra Kumar, N., Durrell, J. H., Shi, Y. H. and Cardwell, D. A. 2015. Numerical Simulation and Analysis of Single Grain YBCO Processed From Graded Precursor Powders. Superconductor Science and Technology, 28, 035016 (9pp).