Glokomda fundus mikroperimetri

Glokom, gangliyon hücre kaybı ile seyreden bir optik nöropatidir. Retina sinir lifi (RNFL), gangliyon hücre aksonlarından oluşmakta olup makülada 4-6 tabakalıdır ve maküladaki retina kalınlığının %35'ini oluşturur. Glokomun değerlendirilmesinde, maküla kalınlığının kullanılabileceği bildirilmiştir. İleri glokomda, optik koherens tomografide (OKT) maküla volümünde azalma gösterilmiştir. Glokomda, peripapiller RNFL ile OKT'deki maküla kalınlığı arasında sıkı korelasyon olduğu bildirilmiştir. Maküla fonksiyonlarının monitorizasyonunda görme keskinliği, 10-2 standart perimetri (SAP) ve yeni kullanıma giren fundus mikroperimetri (MP) kullanılmaktadır. Ancak görme keskinliği maküla fonksiyonlarını tam olarak yansıtmamakta, SAP ile de bazı zayıf noktalar olduğu bilinmektedir. MP-1 ile, glokomda maküla ve fiksasyon stabilitesini değerlendirilmekte ve maküla morfolojisi ile fonksiyonel parametreleri gerçek ve eş zamanlı olarak birleştirilebilmektedir. Bu derlemede, mikroperimetrinin glokomda kullanımı ile ilgili literatur bilgisi gözden geçirilmiştir.

Fundus microperimetry in glaucoma

Glaucoma is an optic neuropathy that progresses with loss of ganglion cells. Retinal nerve fiber layer (RNFL) are composed of ganglion cell axons and extend in 4-5 layers in the macula, comprising 35% of the retinal thickness. It has been reported that macular thickness can be used in evaluating glaucoma. In advanced glaucoma, reduced macular volume has been shown on optical coherence tomography (OCT). Peripapillary RNFL and macular thickness on OCT have been reported to be correlated in glaucoma cases. In monitoring macula functions, visual acuity, 10-2 standard perimetry (SAP), and newly introduced fundus microperimetry (MP) are used. However, visual acuity does not reflect macula functions to the fullest extent, and SAP is known to have some drawbacks. MP-1 can evaluate macula and fixation stability and combine the macula morphology and functional parameters in real and simultaneous timing in glaucoma evaluations. In this review, the use of microperimetry in glaucoma has been evaluated based on relevant literature.

Kaynakça

1. Rohrschneider K, Bültmann S, Springer C. Use of fundus perimetry (microperimetry) to quantify macular sensitivity. Prog Retin Eye Res 2008; 27:536-48.

2. Anderson D. Perimetry with and without automation. Mosby, St. Louis 1987.

3. Enoch J.M. Quantitative layer-by-layer perimetry. Proctor lecture. Invest Ophthalmol. Vis. Sci 1978;17:208-57.

4. Kani K, Ogita Y. Fundus controlled perimetry. Doc. Ophthalmol Proc. Ser 1978;19:341-50.

5. Timberlake GT, Mainster MA, Webb RH, et al. Retinal localization of scotomata by scanning laser ophthalmoscopy. Invest Ophthalmol. Vis. Sci 1982;22:91-7.

6. Webb RH, Hughes GW. Scanning laser ophthalmoscope. IEEE Trans. Biomed. Eng. BME 1981;28:488-92.

7. Convento E, Barbaro G. Technical insights in the interpretation of automatic microperimetry. In: Midena, E. (Ed.), Perimetry and the Fundus: an Introduction to Microperimetry. Slack, Thorofare, NJ, USA 2006;229-37.

8. Orzalesi N, Miglior S, Lonati C, et al. Microperimetry of localized retinal nerve fiber layer defects. Vision Res 1998;38:763-71.

9. Kameda T, Tanabe T, Hangai M, et al. Fixation behavior in advanced stage glaucoma assessed by the MicroPerimeter MP-1. Jpn J Ophthalmol 2009;53:580-7.

10. Lederer DE, Schuman JS, Hertzmark E, et al. Analysis of macular volume in normal and glaucomatous eyes using optical coherence tomography. Am J Ophthalmol 2003;135:838-43.

11. Zeimer R, Shahidi M, Mori M, et al. A new method for rapid mapping of the retinal thickness at the posterior pole. İnvest Ophthalmol Vis Sci 1996;37:1994-2001.

12. Zeimer R, Asrani S, Zou S, et al. Quantitative detection of glaucomatous damage at the posterior pole by retinal thickness mapping. Ophthalmology 1998;105:224-31.

13. Guedes V, Schuhman JS, Hertzmark E, et al. Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes. Ophthalmology 2003;110:177-89.

14. Giovannini A, Amato G, Mariotti C. The macular thickness and volume in glaucoma: an analysis in normal and glaucomatous eyes using OCT. Acta Ophthalmol Scand Suppl 2002;236:34-36.

15. Greenfield DS, Bagga H, Knighton RW. Macular thickness changes in glaucomatous optic neuropathy detected using optical coherence tomography. Arch Ophthalmol 2003;121:41-6.

16. Miglior S. Microperimetry and glaucoma. Acta Ophthalmol Scand 2002;236:19.

17. Okada K, Watanabe W, Koike I, et al. Alternative method of evaluating visual field deterioration in very advanced glaucomatous eye by microperimetry. Jpn J Ophthalmol 2003;47:178-81.

18. Oztürk F, Yavas GF, Küsbeci T, et al. A comparison among Humphrey field analyzer, Microperimetry, and Heidelberg Retina Tomograph in the evaluation of macula in primary open angle glaucoma. J Glaucoma 2008;17:118-21.

19. Shi Y, Liu M, Wang X, et al. Fixation behavior in primary open angle glaucoma at early and moderate stage assessed by the microperimeter MP-1. J Glaucoma 2011.

20. Rensch F, Jonas JB. Direct microperimetry of alpha zone and beta zone parapapillary atrophy. Br J Ophthalmol 2008;92:1617-9.

21. Levene RZ. Central visual field, visual acuity, and sudden visual loss after glaucoma surgery. Ophthalmic Surg 1992;23:388-94.

22. Costa VP, Smith M, Spaeth GL, et al. Loss of visual acuity after trabeculectomy. Ophthalmology 1993;100:599-612.

23. Lima VC, Prata TS, De Moraes CG, Kim J, et al. A comparison between microperimetry and standard achromatic perimetry of the central visual field in eyes with glaucomatous paracentral visualfield defects. Br J Ophthalmol 2010; 94:64-7.

Kaynak Göster