Parametric Examination Anisotropic Thermal Resistance of MIL Composites

Parametric Examination Anisotropic Thermal Resistance of MIL Composites

Metallic-intermetallic laminate (MIL) composites possess intermediary properties emerging from the different laminates used. They are anisotropic since their properties are direction-dependent. The laminates used in a MIL composite have different thermal conductivities and this results in anisotropic thermal resistance. In a recent study, using the composite dimensions and the electrical conductivity of the laminates used to make the MIL composite, the electrical resistance of rectangular prism-shaped MIL composites for different directions is examined. Since thermal and electrical circuits are analogs, a similar analysis can also be done for thermal conduction quantities. In this study, using the composite dimensions and the thermal conductivity of the laminates used to make the MIL composite, the thermal resistance of rectangular prism-shaped MIL composites for different directions is calculated and its direction-dependent parametric examination is carried out.

___

  • [1] Askeland, D.R., The Science and Engineering of Materials, Springer, Boston, US, MA, (1996).
  • [2] Callister, W.D., Rethwisch, D.G., Materials science and engineering: an introduction, Wiley, New York, (2018).
  • [3] Thiyaneshwaran, N., Sivaprasad, K., Ravisankar, B., “Work hardening behavior of Ti/Al-based metal intermetallic laminates”, International Journal of Advanced Manufacturing Technology, 93(1–4): 361–374, (2017).
  • [4] Vecchio, K.S., “Synthetic multi-functional materials by design using metallic-intermetallic laminate (MIL) composites”, In Nano and Microstructural Design of Advanced Materials, Elsevier, 243-254, (2003).
  • [5] Vecchio, K.S., Jiang, F., “Fracture toughness of ceramic-fiber-reinforced metallic-intermetallic-laminate (CFR-MIL) composites”, Materials Science and Engineering A, 649: 407–416, (2016).
  • [6] Wang, Y., Wang, H., Liu, X., Vecchio, K.S., “Microstructure evolution in Ni and Ni-superalloy based metallic-intermetallic laminate (MIL) composites”, Intermetallics, 87: 70-80, (2017).
  • [7] Vecchio, K.S., “Synthetic multifunctional metallic-intermetallic laminate composites”, JOM, 57 (3): 25-31, (2005).
  • [8] Adharapurapu, R.R., Vecchio, K.S., Jiang, F., Rohatgi, A., “Fracture of Ti-Al3Ti metal-intermetallic laminate composites: Effects of lamination on resistance-curve behavior”, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 36(11): 3217–3236, (2005).
  • [9] Bensaid, S., Trichet, D., Fouladgar, J., “Electrical Conductivity Identification of Composite Materials Using a 3-D Anisotropic Shell Element Model”, IEEE Transactions on Magnetics, 45(3): 1859–1862, (2009).
  • [10] Senghor, F.D., Wasselynck, G., Bui, H.K., Branchu, S., Trichet, D., Berthiau, G., “Electrical conductivity tensor modeling of stratified woven-fabric carbon fiber reinforced polymer composite materials”, IEEE Conference on Electromagnetic Field Computation (CEFC), 53(6): 1-4, (2016).
  • [11] Donnelly, KP., Varlow, B.R., “Non-linear DC and AC conductivity in electrically insulating composites”, IEEE Transactions on Dielectrics and Electrical Insulation, 10(4): 610–614, (2003).
  • [12] Haghgoo, M., Ansari, R., Hassanzadeh-Aghdam M.K., “Prediction of electrical conductivity of carbon fiber-carbon nanotube-reinforced polymer hybrid composites”, Composites Part B: Engineering, 167: 728–735, (2019).
  • [13] Yim, Y.J., Park, S.J., “Effect of silver-plated expanded graphite addition on thermal and electrical conductivities of epoxy composites in the presence of graphite and copper”, Composites Part A: Applied Science and Manufacturing, 123: 253–259, (2019).
  • [14] Stan, F., Rosculet, R.T., Fetecau C., “Direct Current method with reversal polarity for electrical conductivity measurement of TPU/MWCNT composites”, Measurement: Journal of the International Measurement Confederation, 136: 345–355, (2019).
  • [15] Simmons, G., “Anisotropic thermal conductivity”, Journal of Geophysical Research, 66(7): 2269-2270, (1961).
  • [16] Su, S., Chen, J., Zhang, C., “Study on Performance of Anisotropic Materials of Thermal Conductivity”, The Open Civil Engineering Journal, 5(1): 168-172, (2011).
  • [17] Jiang, P., Qian, X., Li, X., Yang, R., “Three-dimensional anisotropic thermal conductivity tensor of single crystalline β-Ga2O3”, Applied Physics Letters, 113(23): 232105, (2018).
  • [18] Huang, Y.H., Cheng, W.L., Han, B.C., “Effect of anisotropic thermal conductivity on thermal control performance of form-stable phase change material”, Energy Procedia, 158: 5342-5348, (2019).
  • [19] Rai, A., Sangwan, V.K., Gish, J.T., Hersam, M.C., Cahill D.G., “Anisotropic thermal conductivity of layered indium selenide”, Applied Physics Letters, 118(7): 073101, (2021).
  • [20] Resnick, R., Halliday, D., Walker, J., Fundamentals of physics, John Wiley & Sons, (2021).
  • [21] Cengel, Y., Ghajar, A., Heat and mass transfer Fourth Edition, New York, McGraw -Hill, (2011).
  • [22] Robertson, A.F., Gross, D., “An electrical-analog method for transient heat-flow”, Journal of research of the national bureau of standards, 61(2): 105-115, (1958).
  • [23] Suszyński, Z., “Thermal model based on the electrical analogy of the thermal processes”, In: AIP Conference Proceedings, 197-199, (1999).
  • [24] Ramírez-Laboreo, E., Sagüés, C., Llorente, S., “Thermal modeling, analysis and control using an electrical analogy”, IEEE In 22nd Mediterranean Conference on Control and Automation, 505-510, (2014).
  • [25] Hao, L., Xu, F., Chen, Q., Wei, M., Chen, L., Min, Y., “A thermal-electrical analogy transient model of district heating pipelines for integrated analysis of thermal and power systems”, Applied Thermal Engineering, 139: 213-221, (2018).
  • [26] Absi, R., Marchandon, S., Bennacer, R., “Thermal-electrical analogy and inertia for thermal performance of building envelops”, In MATEC Web of Conferences, EDP Sciences, (2020).
  • [27] Merkaj, X., Dhamo, D., Kalluçi, E., “Thermal Model of a House using Electric Circuits Analogy”, In SMARTGREENS, 81-88, (2021).
  • [28] Yener, S.C., Yener,T., Mutlu, R.,“A process control method for the electric current-activated/assisted sintering system based on the container-consumed power and temperature estimation ”, Journal of Thermal Analysis and Calorimetry, 134(2): 1243-1252, (2018).
  • [29] Yener, T., Yener, Ş.Ç., Mutlu, R., “Computer aided design of PID control of Pulse DC sintering system”, International Informatics and Software Engineering Conference, 1-5, (2019).
  • [30] Yener, S.C., Yener, T., Mutlu, R., “The stiff thermal resistance estimation of an electric current activated sintering system”, In 19th International Metallurgy and Materials Congress, Istanbul, Turkey, 3-6, (2018).
  • [31] Yener, T., Yener, Ş.Ç., Mutlu, R., “Parametric Examination Anisotropic Electrical Resistance of MIL Composites”, 4. International Conference on Material Science and Technology in (IMSTEC), (2019).
  • [32] Gupta, M.S., “Georg Simon ohm and Ohm's law”, IEEE Transactions on Education, 23(3): 156-162, (1980).