Farklı Depolama Zamanlarında Deneysel Olarak Kontamine Edilmiş Kanatlı Yemlerindeki Salmonella enteritidis Kolonizasyonu Üzerine Nisin ve Organik Asit Karışımının Etkileri

Amaç: Bu çalışma, farklı depolama sürelerinde kanatlı hayvan yemlerinde tek başına veya organik asit ile kombinasyon halinde nisinin Salmonella enteritidis üzerine önleyici etkilerini araştırmak için yapılmıştır. Materyal ve Metot: Yemler; kontrol, 150 mg/kg nisin (N150), 300 mg/kg nisin (N300), 3 g/kg organik asit karışımı (OA), 150 mg/kg nisin + 3 g/kg organik asit karışımı (N150+OA), 300 mg/kg nisin + 3 g/kg organik asit karışımı (N300+OA) dan oluşan 6 deneme grubuna ayrılmıştır. Daha sonra yemlere 104 cfu/ml Salmonella enteritidis kültürü eklenmiştir. Yemler oda sıcaklığında muhafaza edilmiş ve denemenin 48. saatinde (başlangıç Zamanı), 7, 15, 21 ve 28. günlerinde Salmonella sayımı yapılmıştır. Bulgular: Bu çalışmada en yüksek Salmonella değerleri Kontrol grubunda gözlenmiştir (P

Carbon Dioxide Capture Properties of $MgCl_2$ Templated Microporous Carbon from p-toluenesulfonic Acid

Herein, porous carbon materials were prepared using p-toluenesulfonic acid (TsOH) as a carbon source with (TsOH-STC) and without (TsOH-C) presence of $MgCl_2.6H_2O$. The products were evaluated in terms of $CO_2$ (carbon dioxide) adsorption performance, texture and surface chemical structure. Both samples contain oxidized sulfur on their surface according to X-ray photoelectron spectroscopy (XPS). TsOH-STC has a 3D porous network, but TsOH-C consists of a dense structure. It was understood that TsOH-C is not suitable to be analyzed with N2 adsorption at cryogenic temperatures probably due to restricted access to narrow pores due to lack of external surface. The $CO_2$ uptakes are 0.78 mmol $g^{-1}$ for TsOH-C and 0.67 mmol $g^{-1}$ for TsOH-STC at flue gas conditions (0.15 bar and 298 K) of coal fired power plants, which is a projection of ultramicropore (pores smaller than 0.7 nm) volume in 0.5 nm range. TsOH-C has CO2 uptake capacity of 2.21 mmol $g^{-1}$ and TsOH-STC reaches 2.47 mmol $g^{-1}$ at 1 bar at 298 K. Maximum CO2 adsorption enthalpy (Qst) value for TsOH-C is 24.9 kJ $mol^{-1}$ and that of TsOH-STC is 25.7 kJ $mol^{-1}$. IAST (ideal adsorbed solution theory) selectivities (CO2:N2 = 15:85) of the samples are 13.5 for TsOH-STC and 19.7 for TsOH-C at 1 bar. It was shown in this study that salt templating with MgCl2 does not influence ultramicroporosity development and provide moderate level CO2 capture performance. However, templating induces formation of supermicropores (micropores larger than 0.7 nm), large mesopores and macropores on TsOH derived carbons.

___

  • Abd El-Ghany W, Tony MA and Mohamed S. 2015. Influence of feed sanitation on zootechnical performance, prevalence, immune status and carcass trait of Salmonella typhimurium infected broiler chickens. Asian J Anim Sci, 9(6), 306-317.
  • [1] Songolzadeh, M., Soleimani, M., Takht Ravanchi, M., Songolzadeh, R., “Carbon dioxide separation from flue gases: A technological review emphasizing reduction in greenhouse gas emissions”, The Scientific World Journal, 2014: 1-34, (2014).
  • Ahmad V, Khan, MS, Jamal QMS, Alzohairy MA, Al Karaawi MA, Siddiqui MU. 2017. Antimicrobial potential of bacteriocins: in therapy, agriculture and food preservation. Int J Antimicrob Agents, 49, 1-11.
  • [2] Zhang, J., Xiao, P., Li, G., Webley, P.A., “Effect of flue gas impurities on $CO_2$ capture performance from flue gas at coal-fired power stations by vacuum swing adsorption”, Energy Procedia, 1: 1115– 1122, (2009).
  • Al-Natour MQ and Alshawabkeh KM. 2005. Using varying levels of formic acid to limit growth of Salmonella gallinarum in contaminated broiler feed. Asian-Aust J Anim Sci, 18(3), 390-395.
  • [3] Ramezanipour Penchah, H., Ghaemi, A., Ganadzadeh Gilani, H., “Benzene-Based Hyper-Cross- Linked Polymer with Enhanced Adsorption Capacity for CO2 Capture”, Energy and Fuels, 33(12): 12578-12586, (2019).
  • Andino A, Pendleton S, Zhang N, Chen, W, Critzer, F, and Hanning I. 2014. Survival of Salmonella enterica in poultry feed is strain dependent. Poult Sci, 93, 441-447.
  • [4] Armutlulu, A., Naeem, M.A., Liu, H.J., Kim, S.M., Kierzkowska, A., Fedorov, A., Müller, C.R., “Multishelled CaO Microspheres Stabilized by Atomic Layer Deposition of $Al_2O_3$ for Enhanced $CO_2$ Capture Performance”, Advanced Materials, (29): 1–9, (2017).
  • Ashari DA, Nissa A, Nursiwi A, Sair AM, Utami R. 2019. Antimicrobial effect of Zingiber officinale var. officinale essential oil and nisin against pathogenic and spoilage microorganisms. IOP Conf. Series: Materials Science and Engineering, 633 (2019) 012005. doi:10.1088/1757-899X/633/1/012005.
  • [5] Liu, Z., Zhang, Z., Jia, Z., Zhao, L., Zhang, T., Xing, W., Komarneni, S., Subhan, F., Yan Z., “New strategy to prepare ultramicroporous carbon by ionic activation for superior $CO_2$ capture”, Chemical Engineering Journal, 337: 290–299, (2018).
  • Axmann S, Kolar V, Adler A, Strnad I. 2017. Efficiency of organic acid preparations for the elimination of naturally occurring Salmonella in feed material. Food Addit Contam Part A, 34(11), 1915-1924.
  • [6] Wang, R., Mi, J.S., Dong, X.Y., Liu, X.F., Lv, Y.R., Du, J., Zhao, J.Y., Zang, S.Q., “Creating a Polar Surface in Carbon Frameworks from Single-Source Metal-Organic Frameworks for Advanced $CO_2$ Uptake and Lithium-Sulfur Batteries” Chemistry of Materials, 31: 4258–4266, (2019).
  • Ay Z, Tuncer Y. 2016. Combined antimicrobial effect of nisin, carvacrol and EDTA against Salmonella Typhimurium in TSBYE at 4°C and 37°C. Rom Biotech Lett, 21(4), 11666-11674.
  • [7] Xu, F., Wu, D., Fu, R., Wei, B., “Design and preparation of porous carbons from conjugated polymer precursors”, Materials Today, 20: 629–656, (2017).
  • Azhar NS, Md Zin NH, and Abdul Hamid THT. 2017. Lactococcus Lactis strain A5 producing nisin-like bacteriocin active against gram positive and negative bacteria. Trop Life Sci Res, 28(2), 107-118.
  • [8] Pardakhti, M., Jafari, T., Tobin, Z., Dutta, B., Moharreri, E., Shemshaki, N.S., Suib, S., Srivastava, R., “Trends in Solid Adsorbent Materials Development for $CO_2$ Capture”, Applied Materials and Interfaces, 11: 34533–34559, (2019).
  • Berge AC, Wierup M. 2012. Nutritional strategies to combat Salmonella in mono-gastric food animal production. Animal, 6(4), 557-564.
  • [9] Nwodika, C., Onukwuli, O.D., “Adsorption Study of Kinetics and Equilibrium of Basic Dye on Kola Nut Pod Carbon”, Gazi University Journal of Science, 30, 86–102, (2017).
  • Bingol EB, Akkaya E, Hampikyan H, Cetin O, Colak H. 2018. Effect of nisin-EDTA combinations and modified atmosphere packaging on the survival of Salmonella enteritidis in Turkish type meatballs. CyTA-J Food, 16(1), 1030-1036.
  • [10] Altuntaş, D. B., Aslan, S., Nevruzoğlu, V., “Carbon Microrod Material Derived From Human Hair and Its Electrochemical Supercapacitor Application”, Gazi University Journal of Science, 34(3): 695- 708, (2021). DOI: https://doi.org/10.35378/gujs.712032
  • Bourassa DV, Wilson KM, Ritz CR, Kiepper BK, Buhr RJ. 2018. Evaluation of the addition of organic acids in the feed and/or water for broilers and the subsequent recovery of Salmonella Typhimurium from litter and ceca. Poult Sci, 97, 64-73.
  • [11] Sethia, G., Sayari, A., “Comprehensive study of ultra-microporous nitrogen-doped activated carbon for $CO_2$ capture”, Carbon, 93: 68–80, (2015).
  • Bryden WL. 2012. Mycotoxin contamination of the feed supply chain: Implications for animal productivity and feed security. Anim Feed Sci Technol, 173(1-2), 134-158.
  • [12] Hwang, C.C., Tour, J.J., Kittrell, C., Espinal, L., Alemany, L.B., Tour, J.M., "Capturing carbon dioxide as a polymer from natural gas", Nature Communications, 5: 1–7, (2014).
  • Carrique-Mas JJ, Bedford S, Davies RH. 2007. Organic acid and formaldehyde treatment of animal feeds to control Salmonella: Efficacy and masking during culture. J Appl Microbiol, 103, 88-96.
  • [13] Shi, J., Yan, N., Cui, H., Xu, J., Liu, Y., Zhang, S., “Salt Template Synthesis of Nitrogen and Sulfur Co-Doped Porous Carbons as $CO_2$ Adsorbents”, ACS Sustainable Chemistry and Engineering, 7: 19513–19521, (2019).
  • Cegielska-Radziejewska R, Stuper K, Szablewski T. 2013. Microflora and mycotoxin contamination in poultry feed mixtures from western Poland. Ann Agric Environ Med, 20(1), 30-35.
  • [14] Pampel, J., Mehmood, A., Antonietti, M.,. Fellinger, T.P, "Ionothermal template transformations for preparation of tubular porous nitrogen doped carbons", Materials Horizons, 4: 493–501, (2017).
  • Choi H-J, Cheigh C-I, Kim S-B, Pyun Y-R. 2000. Production of a nisin- like bacteriocin by Lactococcus lactis subsp. lactis A164 isolated from Kimchi. J Appl Microbiol, 88, 563-571.
  • [15] Wang, M., Fan, X., Zhang, L., Liu, J., Wang, B., Cheng, R., Li, M., Tian, J., Shi, J., "Probing the role of O-containing groups in $CO_2$ adsorption of N-doped porous activated carbon", Nanoscale, 9: 17593–17600, (2017).
  • Cotter PD, Ross RP, and Hill C. 2013. Bacteriocins – a viable alternative to antibiotics? Nat Rev Microbiol, 11, 95-105.
  • [16] Rao, L., Ma, R., Liu, S., Wang, L., Wu, Z., Yang, J., Hu, X., "Nitrogen enriched porous carbons from D-glucose with excellent $CO_2$ capture performance", Chemical Engineering Journal, 362: 794–801, (2019).
  • Davies RH, Wales AD. 2010. Investigations into Salmonella contamination in poultry feedmills in the United Kingdom. J Appl Microbiol, 109(4), 1430-1440.
  • [17] Wang, E.J., Sui, Z.Y., Sun, Y.N., Ma, Z., Han, B.H., "Effect of Porosity Parameters and Surface Chemistry on Carbon Dioxide Adsorption in Sulfur-Doped Porous Carbons", Langmuir, 34: 6358– 6366, (2018).
  • Doyle MP, Erickson MC. 2017. Opportunities for mitigating pathogen contamination during on-farm food production. Int J Microbiol, 152: 54-74.
  • [18] Seredych, M., Jagiello, J., Bandosz, T.J., "Complexity of $CO_2$ adsorption on nanoporous sulfur- doped carbons - Is surface chemistry an important factor?", Carbon, 74: 207–217, (2014).
  • El Baaboua A, El Maadoudi M, Bouyahya A, Belmehdi O, Kounnoun A, Zahli R, Abrini J. 2018. Evaluation of antimicrobial activity of four organic acids used in chicks feed to control Salmonella typhimurium: suggestion of amendment in the search standard. Int J Microbiol, Volume 2018, Article ID 7352593, 9 pages.
  • [19] Sun, Y., Zhao, J., Wang, J., Tang, N., Zhao, R., Zhang, D., Guan, T., Li K., "Sulfur-Doped Millimeter-Sized Microporous Activated Carbon Spheres Derived from Sulfonated Poly(styrene- divinylbenzene) for $CO_2$ Capture", The Journal of Physical Chemistry C, 121: 10000–10009, (2017).
  • EFSA, 2008. Microbiological risk assessment in feedingstuffs for food- producing animals scientific opinion of the panel on biological hazards. The EFSA Journal, 720, 1-84.
  • [20] Myers, A.L., Prausnitz, J.M., "Thermodynamics of mixed-gas adsorption", AIChE Journal, 11: 121– 127, (1965).
  • FAO and IFIF. 2010. Good practices for the feed industry– Implementing the Codex Alimentarius Code of Practice on Good Animal Feeding. FAO Animal Production and Health Manual, No: 9, s. 79, Rome.
  • [21] Nicolae, S.A., Szilágyi, P.Á., Titirici, M.M., "Soft templating production of porous carbon adsorbents for $CO_2 and H_2S$ capture", Carbon, 169: 193–204, (2020).
  • Fernández-Pérez R, Sáenz Y, Rojo-Bezares B, Zarazaga M, Rodriguez JM, Torres C, Tenario C, Ruiz-Larrea. 2018. Production and antimicrobial activity of nisin under enological conditions. Front Microbiol, 9, 1918.
  • [22] Simon, C.M., Smit, B., Haranczyk M., "PyIAST: Ideal adsorbed solution theory (IAST) Python package", Computer Physics Communications, 200: 364–380, (2016).
  • Galvão MF, Prudêncio CV, Vanetti MCD. 2015. Stress enhances the sensitivity of Salmonella enterica serovar Typhimurium to bacteriocins. J Appl Microbiol, 118, 1137-1143.
  • [23] Greczynski, G., Hultman, L., "X-ray photoelectron spectroscopy: Towards reliable binding energy referencing", Progress in Materials Science, 107: 100591, (2020).
  • Govaris A, Solomakos N, Pexara A, Chatzopoulou PS. 2010. The antimicrobial effect of oregano essential oil, nisin and their combination against Salmonella Enteritidis in minced sheep meat during refrigerated storage. Int J Food Microbiol, 137, 175-180.
  • [24] Saha, D., Kienbaum, M.J., "Role of oxygen, nitrogen and sulfur functionalities on the surface of nanoporous carbons in $CO_2$ adsorption: A critical review", Microporous Mesoporous Materials, 287: 29–55, (2019).
  • Ha SD, Maciorowski KG, Kwon YM, Jones FT, Ricke SC. 1998. Survivability of indigenous microflora and a Salmonella typhimurium marker strain in poultry mash treated with buffered propionic acid. Anim Feed Sci Technol, 75, 145-155.
  • [25] Zaman, A.C., "Polyol derived sulfonated solvothermal carbon for efficient dye removal from aqueous solutions", Journal of Molecular Liquids, 249: 892–903, (2018).
  • Hald T, Wingstrand A, Pires SM, Vieira A, Domingues AR, Lundsby K, Andersen VD. 2012. Assessment of the human-health impact of Salmonella in animal feed. 1st. Ed., National Food Institute, Technical University of Denmark.
  • [26] Seredych, M., Rodríguez-Castellón, E., Bandosz, T.J., "Alterations of S-doped porous carbon-rGO composites surface features upon $CO_2$ adsorption at ambient conditions", Carbon, 107: 501–509, (2016).
  • Humphrey TJ and Lanning DG. 1988. The vertical transmission of salmonellas and formic acid treatment of chicken feed. A possible strategy for control. Epidem Inf, 100, 43-49.
  • [27] Hu, Y., Yang, J., Tian, J., Jia, L., Yu, J.S., "Waste frying oil as a precursor for one-step synthesis of sulfur-doped carbon dots with pH-sensitive photoluminescence", Carbon, 77: 775–782, (2014).
  • Iba AM and Berchieri A. 1995. Studies on the use of a formic acid- propionic acid mixture (Bio-add) to control experimental Salmonella infection in broiler chickens. Avian Pathol, 24, 303-311.
  • [28] Qian, W., Sun, F., Xu, Y., Qiu, L., Liu, C., Wang, S., Yan, F., "Human hair-derived carbon flakes for electrochemical supercapacitors", Energy and Environmental Science, 7: 379–386, (2014).
  • İpçak HH, Özüretmen S, Özelçam H, Ünlü HB. 2017. Hayvan beslemede doğal koruyucular ve etki mekanizmaları. Hayvansal Üretim, 58(1): 57-65.
  • [29] Seema, H., Kemp, K.C., Le, N.H., Park, S.W., Chandra V., Lee J.W., Kim K.S., “Highly selective CO2 capture by S-doped microporous carbon materials”, Carbon, 66: 320–326, (2014). 386 Ali Can ZAMAN/ GUJ Sci, 35(2): 372-386 (2022)
  • Jayaweera TSP, Jayasinghe JMCS, Madushanka DNN, Yasawathie DG, Ruwandeepika HAD. 2018. Assessment of the Inhibitory Effect of Nisin (E234) on Salmonella typhimurium and Bacillus subtilis in Chicken Sausage. AFSJ, 2(3), 1-11.
  • [30] Sevilla, M., Fuertes, A.B., "Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides", Chemistry, 15(16): 4195–4203, (2009).
  • Jones FT. 2011. A review of practical Salmonella control measures in animal feed. J Appl Poultry Res, 20, 102-113.
  • [31] Cychosz, K.A., Guillet-Nicolas, R., García-Martínez, J., Thommes, M., "Recent advances in the textural characterization of hierarchically structured nanoporous materials", Chemical Society Reviews, 46: 389–414, (2017).
  • Khan SH and Iqbal J. 2016. Recent advances in the role of organic acids in poultry nutrition. J Appl Anim Res, 44(1), 359-369.
  • [32] Grau-Marin, D., Silvestre-Albero, J., Jardim, E.O., Jagiello, J., Betz, W.R., Peña, L.E., “Evaluation of the textural properties of ultramicroporous carbons using experimental and theoretical methods”, Carbon, 157:495–505, (2020).
  • Kierończyk B, Sassek M, Pruszysńka-Oszmałek E, Kołodziejski P, Rawski M, Światkiewicz S, Józefiak D. 2017. The physiological response of broiler chickens to the dietary supplementation of the bacteriocin nisin and ionophore coccidiostats. Poult Sci, 96, 4026-4037.
  • [33] Jeromenok, J., Weber, J., “Restricted access: On the nature of adsorption/desorption hysteresis in amorphous, microporous polymeric materials”, Langmuir, 29: 12982–12989, (2013).
  • Koyuncu S, Andersson MG, Löfström C, Skandamis PN, Gounadaki A, Zentek J, Häggblom P. 2013. Organic acids for control of Salmonella indifferent feed materials. BMC Vet Res, 9, 81.
  • [34] Jagiello, J., Ania, C., Parra, J.B., Cook, C., “Dual gas analysis of microporous carbons using 2D- NLDFT heterogeneous surface model and combined adsorption data of N2 and CO2”, Carbon, 91: 330–337, (2015).
  • Lagha AB, Haas B, Gottschalk M, Grenier D. 2017. Antimicrobial potential of bacteriocins in poultry and swine production. Vet Res, 48, 22. Doi: 10.1186/s13567-017-0425-6.
  • [35] Oschatz, M., Antonietti, M., "A search for selectivity to enable $CO_2$ capture with porous adsorbents", Energy and Environmental Science, 11: 57–70, (2018).
  • Maciorowski KG, Herrera P, Kundinge MM and Ricke SC. 2006. Animal feed production and contamination by foodborne Salmonella. J Verbrauch Lebensm, 1, 197-209.
  • [36] Zhou, L., Fan, J., Cui, G., Shang, X., Tang, Q., Wang, J., Fan, M., “Highly efficient and reversible $CO_2$ adsorption by amine-grafted platelet SBA-15 with expanded pore diameters and short mesochannels”, Green Chemistry, 16: 4009–4016, (2014).
  • Maciorowski KG, Herrera P, Jones FT, Pillai SD, Ricke SC. 2007. Effects on poultry and livestock of feed contamination with bacteria and fungi. Anim Feed Sci Technol, 133(1-2), 109-136.
  • [37] Kim, Y.K., Kim, G.M., Lee, J.W., "Highly porous N-doped carbons impregnated with sodium for efficient $CO_2$ capture", Journal of Materials Chemistry A, 3: 10919–10927, (2015).
  • Matlho G, Himathongkham S, Riemann H and Kass P. 1997. Destruction of Salmonella enteritidis in poultry feed by combination of heat and propionic acid. Avian Dis, 41(1), 58-61.
  • [38] Zhang, Z., Zhou, J., Xing, W., Xue, Q., Yan, Z., Zhuo, S., Qiao, S.Z., “Critical role of small micropores in high $CO_2$ uptake”, Physical Chemistry Chemical Physics, 15: 2523–2529, (2013).
  • Mills S, Ross RP, Hill C. 2017. Bacteriocins and bacteriophage; a narrow-minded approach to food and gut microbiology. FEMS Microbiol Rev, 41(Supp 1), S129-S153.
  • [39] Zhao, Y., Liu, X., Yao, K.X., Zhao, L., Han, Y., "Superior Capture of $CO_2$ Achieved by Introducing Extra-framework Cations into N-doped Microporous Carbon", Chemistry of Material, 24: 4725– 4734, (2012).
  • Ndoti-Nembe A, Vu KD, Han J, Doucet N, Lacroix M. 2015. Antimicrobial effects of nisin, essential oil, and γ -irradiation treatments against high load of Salmonella typhimurium on mini- carrots. J Food Sci, 80(7), M1544- M1548.
  • [40] Sánchez-Sánchez, Á., Suárez-García, F., Martínez-Alonso, A., Tascón, J.M.D., "Influence of porous texture and surface chemistry on the $CO_2$ adsorption capacity of porous carbons: Acidic and basic site interactions", ACS Applied Materials & Interfaces, 6: 21237–21247, (2014).
  • Nissa A, Utami R, Sari AM, Nursuwi A. 2018. Combination effect of nisin and red ginger essential oil (Zingiber officinale var. rubrum) against foodborne pathogens and food spoilage microorganisms. International Conference on Science and Applied Science, 020023-1– 020023-6.
  • [41] Cimino, R.T., Kowalczyk, P., Ravikovitch, P.I., Neimark, A. V. “Determination of Isosteric Heat of Adsorption by Quenched Solid Density Functional Theory”, Langmuir, 33: 1769–1779, (2017).
  • NRC 1994. Nutrient Requirements of Poultry. 9th rev. ed. National Academy Press, Washington, D.C.
  • [42] Rouquerol, F., Rouquerol, J., Sing, K., "Thermodynamics of Adsorption at the Gas–Solid Interface, in: Adsorpt. by Powders Porous Solids", Elsevier, 27–50, (1999).
  • Pinilla CMB, Brandelli A. 2016. Antimicrobial activity of nanoliposomes co-encapsulating nisin and garlic extract against Gram-positive and Gram-negative bacteria in milk. Innov Food Sci Emerg Technol, 36, 287-293.
  • [43] Xia, Y., Zhu, Y., Tang, Y., "Preparation of sulfur-doped microporous carbons for the storage of hydrogen and carbon dioxide", Carbon, 50: 5543–5553, (2012).
  • Phongphakdee K, Nitisinpraset S. 2015. Combination inhibition activity of nisin and ethanol on the growth inhibition of pathogenic gram negative bacteria and their application as disinfectant solution. J Food Sci, 80(10), M2241-M2246.
  • [44] Madani, S.H., Sedghi, S., Biggs, M.J., Pendleton, P., "Analysis of Adsorbate-Adsorbate and Adsorbate-Adsorbent Interactions to Decode Isosteric Heats of Gas Adsorption", ChemPhysChem, 16: 3797–3805, (2015).
  • Rattanachaikunsopon P, Phumkhachorn P. 2010. Synergistic antimicrobial effect of nisin and ρ-cymene on Salmonella enterica serovar typhi in vitro and on ready-to-eat food. Biosci Biotech Bioch, 74(3), 520-524.
  • Rouse J, Rolow A, Nelson CE. 1988. Research note: effect of chemical treatment of poultry feed on survival of Salmonella. Poult Sci, 67, 1225-1228.
  • Sangcharoen N, Klaypradit W, Wilaipun P. 2017. Antimicrobial activity optimization of nisin, ascorbic acid and ethylenediamine tetraacetic acid disodium salt (EDTA) against Salmonella Enteritidis ATCC 13076 using response surface methodology. Agric Nat Resour, 51, 355-364.
  • SAS 1999. The SAS System SAS Institute Inc., Cary, NC, USA, Version 8 Copyright © 1999.
  • Sauli I, Danuser J, Geeraerd AH, Van Impe JF, Rüfenacht J, Bissig- Choisat B, Wenk C, Stärk KDC. 2005. Estimating the probability and level of contamination with Salmonella of feed for finishing pigs produced in Switzerland-the impact of the production pathway. Int J Food Microbiol, 100(1-3), 289-310.
  • Selim SA, El Alfy SM, Abdel Aziz MH, Mashait MS, Warrad MF. 2012. Evolution of bactericidal activity of selected food additives against food borne microbial pathogens. Biosci Biotech Res Asia, 9(1), 7-17.
  • Shahbazi Y. 2016. The antibacterial effect of Ziziphora clinopodioides essential oil and nisin against Salmonella typhimurium and Staphylococcus aureus in doogh, a yoghurt-based Iranian drink. Vet Res Forum, 7(3), 213-219.
  • Silva JPL, Souza EF, Modesta RCD, Gomes IA, Freitas-Silva O, Franco BDGM. 2016. Antibacterial activity of nisin, oregano essential oil, EDTA, and their combination against Salmonella Enteritidis for application in mayonnaise. Vigil. sanit. Debate, 4(1), 83-91.
  • Todorov SD, Dicks LMT. 2005. Lactobacillus plantarum isolated from molasses produces bacteriocins active against Gram-negative bacteria. Enzyme Microb Tech, 36, 318-326.
  • Torres GJ, Piquer FJ, Algarra L, Frutos C, Sobrino OJ. 2011. The prevalence of Salmonella enterica in Spanish feed mills and potential feed-related risk factors for contamination. Prev Vet Med, 98(2-3), 81-87.
  • Ustundag, AO, Ozdogan M. 2011. Kanatlı hayvan beslemede bakteriyosinlerin kullanım olanakları. Hayvansal Üretim, 52(2), 69- 73.
  • Van Immerseel F, De Zutter L, Houf K, Pasmans F, Haesebrouck F, Ducatelle R. 2009. Strategies to control Salmonella in the broiler production chain. World Poultry Sci J, 65(3), 367-392.
  • Vu THA, Huu NN, Ly HD, Tu NHK. 2016. Detection of Salmonella Spp. in feed and their antibiotic susceptibility for alternative therapy. J Appl Pharm Sci, 6(5), 18-21.
  • Vukmirović DM, Rakita SM, Spasevski NJ, Kokić BM, Banjac VV, Čabarkapa IS. 2017. A review of possibilities for control of Salmonella and other pathogenic bacteria in pig feed. Food Feed Res, 44(2), 151-162.
  • Yang SC, Lin CH, Sung CT, Fang JY. 2014. Antibacterial activities of bacteriocins: application in foods and pharmaceuticals. Frontiers in Microbiology https://doi.org/10.3389/fmicb.2014.00241.