BİTKİLERDE KURAKLIK STRESİNİN ETKİLERİ VE DAYANIKLILIK MEKANİZMALARI (Derleme)

Bitkilerde, büyümeyi ve verimi etkileyen en yaygın çevresel streslerden biri olan kuraklık stresi, metabolik, mekanik ve oksidatif birçok değişikliğe neden olmaktadır. Kuraklık; stresin şiddetine, süresine, diğer stres türleri ile etkileşimlerine, strese maruz kalan bitkinin genotipine ve gelişim basamağına bağlı olarak, bitkilerde sınırlı çevresel koşullara adapte olmayı sağlayacak birçok fizyolojik, biyokimyasal ve moleküler cevabı indüklemektedir

THE EFFECTS OF DROUGHT ON PLANTS AND TOLERANCE MECHANISMS

ABSTRACTDrought stress, one of the most common environmental limitations affecting growth and productivity of plants, causes many metabolic, mechanic and oxidative changes in plants. Drought induces a diverse set of physiological, biochemical and molecular responses in plants, which provide the ability of adaptation to limited environmental conditions, depending on intensity and periods of stress, interactive effects of the other stress types, development stage and genotype of plants.

___

  • Lichtenhaler, H.K., “Vegetation stress: an introduction to the stress concept in plants”, J.Plant Physiol., 148:4-14 (1996).
  • Blum, A., “Breeding Crop Varieties for Stress Environments”, Critical Reviews in Plant Sciences, 2: 199-237 (1986).
  • Arora, A., Sairam, R.K. and Srivastava, G.C., “Oxidative stress and antioxidative systems in plants”, Curr. Sci., 82: 1227–1238 (2002).
  • Jones, H.G., Plants and Microclimate, Cambridge University Press, Cambridge, (1992).
  • Kozlowski, T.T. and Pallardy, S.G., Physiology of Woody Plants, Academic Press, San Diego, (1997).
  • Smirnoff, N., “The role of active oxygen in the response of plants to water deficit and desiccation”, New Phytol., 125: 27-58 (1993).
  • Levitt J., Responses of Plants to Environmental Stresses, Vol 1, Academic Press, New York, (1980).
  • McKersie, B.D. and Leshem, Y., Stress and Stress Coping in Cultivated Plants, Kluwer Academic Publishers, Netherlands, (1994).
  • Salisbury, F.B. and Ross, C.W., Plant Physiology, Wadsworth Publishing Co., California, (1992).
  • Campbell, M.K., Biochemistry, Harcourt Brace Jovanovich College Publishers, Fort Worth, USA, (1991).
  • Bray, E.A, “Plant Responses to Water Deficit”, Trends Plant Sci., 2: 48-54 (1997).
  • Kessler, B., “ Nucleic acids as factors in drought resistance of higher plants”, Recent Advan. Bot. , 1153-1159, (1961).
  • Farrant J.M., “A comparison of mechanisms of desiccation tolerance among three angiosperm resurrection plant species”, Plant Ecol., 151: 29-39 (2000).
  • Stuhlfauth, T., Scheuermann, R. and Fock, H.P., “Light energy dissipation under water stress conditions”, Plant Physiol., 92: 1053-1061, (1990).
  • Tambussi, E.A., Bartoli, C.G, Beltrano, J., Guiamet, J.J. and Araus, J.L., “Oxidative damage to thylakoid proteins in water-stressed leaves of wheat (Triticum aestivum)”, Physiol. Plant., 108: 398-404 (2000).
  • Sgherry, C.L.M., Pinzino C. and Navari-Izzo, F., “Sunflower seedlings subjected to increasing water stress by water deficit: changes in O2- production related to the composition of thylakoid membranes”, Physiol Plant, 96: 446-452 (1996).
  • Halliwell B. and Gutteridge J.M.C., Free Radicals in Biology and Medicine, Oxford: Clarendon Press. (1989).
  • Charles, S.A. and Halliwell B., “Effect of hydrogen peroxide on spinach (Spinacia oleraceae) chloroplast fructose biphosphatase”, Biochem. J., 189: 373-376 (1980).
  • Kaiser, W.M., “Reversible inhibition of the Calvin cycle and activation of the oxidative pentose phosphate cycle in isolated intact chloroplasts by hydrogen peroxide”, Planta, 145: 377-382 (1979).
  • Jung, S., “Variation in antioxidant metabolism of young and mature leaves of Arabidopsis thaliana subjected to drought”, Plant Sci., 166: 459-466 (2004).
  • Srivalli, B., Sharma, G. and Khanna-Chopra, R., “Antioxidative defence system in upland rice cultivar subjected to increasing intensity of water stress followed by recovery”, Physiol. Plant., 119: 503-512 (2003).
  • Ramachandra Reddy, A., Chaitanya, K.V., Jutur, P.P. and Sumithra, K., “Differential antioxidative responses to water stress among five mulberry (Morus alba L.) cultivars”, Environ. Exp. Bot., 52: 33-42 (2004).
  • Pinheiro, H.A., DaMatta, F.M., Chaves, A.R.M., Fontes, E.P.B. and Loureiro, M.E., “Drought tolerance in relation to protection against oxidative stress in clones of Coffea canephora subjected to long-term drought”, Plant Sci, 167, 1307-1314 (2004).
  • Alexieva, V., Ivanov, S., Sergiev, I. and Karanov, E., “ Interaction between stresses”, Bulg. J. Plant Physiol., Special Issue, 1-17 (2003).
  • Lima, A.L.S., DaMatta, F.M., Pinheiro, H.A., Totola, M.R. and Loureiro, M.E., “ Photochemical responses and oxidative stress in two clones of Coffea canephora under water deficit conditions”, Environ. Exp. Bot., 47: 239-247 (2002).
  • Muller, J.E. and Whitshitt, M.S., “Plant cellular responses to water deficit, Plant Growth Regul., 20: 41-46 (1996).
  • Teiz, L. and Zeiger, S.C.E., Plant Physiology, University of California, Los Angeles Sinauer Associates, Inc., Publisher, 726-735 (1998).
  • Asamaa, K., Sober, A., Hartung, W. and Niinemets, U., “Rate of stomatal opening, shoot hydraulic conductance and photosynthetic characteristics in relation to leaf abscisic acid concentration in six temperate deciduous trees”, Tree Physiol., 22: 267-276 (2002).
  • Comstock, J.P., “Hydraulic and chemical signalling in the control of stomatal conductance and transpiration”, J. Exp. Bot., 53: 195-200 (2002).
  • Asada, K., “The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons”, Annu. Rev. Plant Physiol., Plant Mol. Biol., 50: 601-639 (1999).
  • He, J.X., Wang, J. and Liang H.G., “ Effects of water stress on photochemical function and protein metabolism of photosystem II in wheat leaves”, Physiol. Plant., 93: 771-777 (1995).
  • Baker, N.R., “A possible role for photosystem II in environmental perturbations of photosynthesis”, Physiol. Plant., 81: 563-570 (1991).
  • Siefermann-Harms, D. and Angerhofer, “A. evidence for an O2-barrier in the light-harvesting chlorophyll-a/b-protein complex LHC II”, Photosynth Res., 55: 83-94 (1998).
  • Kaiser, W.M., “Effects of water deficit on photosynthetic capacity”, Physiol. Plant., 71: 142-149 (1987).
  • Mundree, S.G, Baker, B., Mowla, S., Peters, S., Marais, S., Willigen, C.V., Govender, K., Maredza, A., Muyanga, S., Farrant, J.M. and Thomson J.A., ”Physiological and molecular insights into drought tolerance”, Afr. J. Biotechnol.,1: 23-38 (2002).
  • Sherwin, H.W. and Farrant J.M., “Protection mechanisms against excess light in the resurrection plants Craterostigma wilmsii and Xerophyta viscosa”, Plant Growth Regul., 24: 202-210 (1998).
  • Vander Willigen, C., Mundree S.G. and Farrant J.M., “Tonoplast intrinsic proteins in the resurrection grass, Eragrostis nindensis”, Gordon Conferance, Oxford, UK (2002).
  • Vicré, M., Sherwin, H.W, Driouich, A., Jaffer, M., Jauneau, A. and Farrant J.M., “Cell wall properties of hydrated and dry leaves of the resurrection plant Craterostigma wilmsii”, J. Plant Physiol., 155: 719-726 (1999).
  • Vander Willigen, C., Pammenter, N.W., Mundree S.G. and Farrant J.M., “Some physiological comparisons between the resurrection grass, Eragrostis nindensis, and the related desiccation-sensitive species, Eragrostis curvula”, Plant Growth Regul., 35: 121-129 (2001).
  • Mundree, S.G. and Farrant, J.M., “ Some physiological and molecular insights into the mechanisms of desiccation tolerance in the resurrection plant Xerophyta viscosa Baker. In Cherry, J.H., Ryther, A. and Locy, R.D (eds)., Plant Tolerance to Abiotic Stresses in Agriculture: Role of Genetic Engineering, Kluwer Academic Publishers, Dordrecht, Netherlands, pp 201-222 (2000).
  • Zhu, J.K., “Salt and drought stress signal transduction in plants”, Annu. Rev.Plant Biol., 53: 247-273 (2002).
  • Shinozaki, K. and Yamaguchi-Shinozaki K., “Molecular responses to drought and cold stress”, Curr Opin Biotechnol, 7: 161-167 (1996).
  • Shinozaki, K. and Yamaguchi-Shinozaki K., “Gene expression and signal transduction in water-stress response”, Plant Physiol., 115: 327-334 (1997).
  • Chrispeels, M.J. , Crawford, N.M. and Schroeder, J.L., “Proteins for transport of water and mineral nutrients across the membranes of plant cells”, Plant Cell, 11: 661-676 (1999).
  • Schäffner, A.R., “Aquaporin function, structure, and expression: are there more surprises to surface in water relations?”, Planta, 204: 131-139 (1998).
  • Martre, P., Morillon, R., Barrieu, F., North, G.B., Nobel, P.S. and Chrispeels, M.J., “ Plasma membrane aquaporins play a significant role during recovery from water deficit, Plant Physiol, 130: 2101-2110 (2002).
  • Maurel, C. and Chrispees, M.J., “Aquaporins: a molecular entry into plant water relations”, Plant Physiol, 125: 135138 (2001).
  • Conley, T.R., R.E. Sharp, and J.C. Walker, “Water deficit rapidly stimulates the activity of a protein kinase in the elongation zone of the maize primary root”, Plant Physiol., 113: 219-226 (1997).
  • Gurley, W.B., “HSP101: a key component for the acquisition of thermotolerance in plants”, Plant Cell, 12: 457-460 (2000).
  • Iba, K., “ Acclimative responses to temperature stress in higher plants: approaches of gene engineering for temperature tolerance”, Annu. Rev. Plant Biol., 53: 225-245 (2002).
  • Guy, C. L. and Li, Q.B., “The organization and evolution of the spinach stress 70 molecular chaperone gene family”, Plant Cell, 10: 539-556 (1998).
  • Boston, R.S., Viitanen P.V. and Vierling, E., “Molecular chaperones and protein folding in plants”, Plant Mol. Biol., 32: 191-222 (1996).
  • Soulages, J.L., Kim, K., Walters, C. and Cushman, J.C., “Temperature-induced extended helix/random coil transitions in a group 1 late embryogenesis-abundant protein from soybean”, Plant Physiol, 128: 822-832 (2002).
  • Nylander, M., Svensson, J., Palva, E.T. and Welin, B.V., “Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana”, Plant Mol Biol. ,45: 263-279 (2001).
  • Dure, L. III, “ LEA proteins and the desiccation tolerance of seeds”, Cell Mol. Biol. Plant Seed Dev., 4: 525-543 (1997).
  • Garay-Arroyo, A., Colmenero-Flores, J.M., Garciarrubio, A. and Covarrubias, A.A., “Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit”, J Biol Chem, 275: 5668-5674 (2000).
  • Close, T.J., “Dehydrins: a commonalty in the response of plants to dehydration and low temperature”, Physiol Plant, 100: 291-296 (1997).
  • Whitsitt, M.S., Collins, R.G. and Mullet, J.E., “Modulation of dehydration tolerance in soybean seedlings”, Plant Physiol, 114: 917-925 (1997).
  • Moons, A., Bauw, G., Prinsen, E., Van Montagu, M. and Straeten, D.V.D., “Molecular ad physiological responses to abscisic acid and salts in roots of salt-sensitive and salt-tolerant Indica rice varieties”, Plant Physiol, 107: 177-186 (1995).
  • Danyluk, J., Peron, A., Houde, M., Limin, A., Fowler, B., Benhamou, N. and Sahran, F., “Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat”, Plant Cell, 10: 623-638 (1998).
  • Moghaieb, R.E.A, Saneoka, H. and Fujita, K., “Effect of salinity on osmotic adjustment, glycinebetaine accumulation and the betain aldehyde dehydrogenase gene expression in two halophytic plants, Salicornia europaea and Suaeda maritima”, Plant Sci., 166: 1345-1349 (2004).
  • Sánchez, F.J., de Andrés, E.F., Tenorio, J.L. and Ayerbe, L., “Growth of epicotyls, turgor maintenance and osmotic adjustment in pea plants (Pisum sativum L.) subjected to water stress”, Field Crops Res., 86: 81–90 (2004).
  • Chimenti, C.A, Pearson, J. and Hall, A.J., “Osmotic adjustment and yield maintenance under drought in sunflower”, Field Crops Res., 75: 235-246 (2002).
  • Smirnoff, N., “Plant resistance to environmental stresses”, Curr. Opin. Biotechnol., 9: 214-219 (1998).
  • Mani, S., Van de Cotte, B., Montagu, M.V. and Verbruggen, N., “ Altered levels of proline dehydrogenase cause hypersensitivity to proline and its analogs in Arabidopsis”, Plant Physiol, 128: 73-83 (2002).
  • Gorham, J., “Betaines in higher plants: biosynthesis and role in stress metabolism. In Wallsgrove, R.M. ed, Amino Acids and Their Derivatives in Higher Plants. Cambridge University Press, Cambridge, UK, 171-203 (1995).
  • Ramos, M.L.G., Gordon, A.J., Minchin, F.R., Sprent, J.I. and Parsons, R., “Effect of water stress on nodule physiology and biochemistry of a drought tolerant cultivar of common bean (Phaseolus vulgaris L.)”, Ann. Bot., 83: 57–63 (1999).
  • Balibrea, M.E., Rus-Alvarez, A.M., Bolarín, M.C. and Pérez-Alfocea, F., “ Fast changes in soluble carbohydrates and proline contents in tomato seedlings in response to ionic and non-ionic iso-osmotic stresses”, J. Plant Physiol., 151: 221–226 (1997).
  • Guy, C.L., “Cold acclimation and freezing stress tolerance: role of protein metabolism”, Annu. Rev. Plant Physiol.and Plant Mol. Biol., 41: 187–223 (1990).
  • Wang, H.L., Lee, P.D., Chen, W.L., Huang, D.J. and Su, J.C., “Osmotic stress-induced changes of sucrose metabolism in cultured sweet potato cells”, J. Exp.Bot., 51: 1991-1999 (2000).
  • Kerepesi, I. and Galiba, G., “Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings”, Crop Sci., 40:482-487 (2000).
  • Shen, B., Jensen. R.G. and Bohnert, H.J., “Mannitol protects against oxidation by hydroxyl radicals”, Plant Physiol., 115: 527–532 (1997).
  • Jonak, C., Ligterink, W. and Hirt, H., “MAP kinases in plant signal transduction”, Cell Mol. Life Sci., 55: 204-213 (1999).
  • Jonak, C., Kiegerl, S., Ligterink, W., Siligan, C., Baudouin, E., Beyerly, J., Cardinale, F., Hausl, C., Zwerger, K., Meskiene, I. and Hirt, H., “MAP kinases in plant signal transduction: versatile tools for signaling stress, cell cycle and more’, In Cherry, J.H., Ryther, A. and Locy, R.D (eds)., Plant Tolerance to Abiotic Stresses in Agriculture: Role of Genetic Engineering, Kluwer Academic Publishers, Dordrecht, Netherlands, 67-76 (2000).
  • Busk, P. and Pagés, M., “Regulation of absisic acid-induced transcription”, Plant Mol. Biol., 37: 425-435 (1998).
  • Okamuro, J., Szeto, W., Lotys-Prass C. and Jofuku D., “Photo and hormonal control of meristem identity in the Arabidopsis flower mutants apetala2 and apetala1”, Plant Cell, 9: 37-47 (1997).
  • Vinson, C.R., Sigler, P.B. and MacKnight, S.L., “Scissors-grip model for DNA recognition by a family of leucin zipper proteins”, Science, 246: 911-916 (1989).
  • Munnik T. and Meijer H.J.G., “Osmotic stress activates distinct lipid and MAPK signaling pathways in plants”, FEBS Lett. 498:172–78 (2001).
  • DeWald D.B., Torabinejad J., Jones C.A., Shope J.C. and Cangelosi A.R., “Rapid accumulation of phosphatidylinositol 4,5-bisphosphate and inositol 1,4, 5-trisphosphate correlates with calcium mobilization in saltstressed Arabidopsis”, Plant Physiol, 126:759–69 (2001).
  • Drobak B.K. and Watkins P.A., “Inositol (1,4,5) trisphosphate production in plant cells: an early response to salinity and hyperosmotic stress”, FEBS Lett., 481:240–44 (2000).
  • Heilmann I., Perera I.Y., Gross W. and Boss W.F., “Changes in phosphoinositide metabolism with days in culture affect signal transduction pathways in Galdieria suphuraria”, Plant Physiol, 119:1331–39 (1999).
  • Takahashi S., Katagiri T., Hirayama T., Yamaguchi-Shinozaki K. and Shinozaki K., “Hyperosmotic stress induced a rapid and transient increase in inositol 1,4,5-trisphosphate independent of abscisic acid in Arabidopsis cell culture”, Plant Cell Physiol., 42:214–22 (2001).
  • Lee Y., Choi Y.B., Suh J., Lee J. and Assmann S.M., “Abscisic acid–induced phosphoinositide turnover in guard cell protoplasts of Vicia faba”, Plant Physiol., 110:987–96 (1996).
  • Xiong L., Lee B.H., Ishitani M., Lee H., Zhang C. and Zhu J.K., “FIERY1 encoding an inositol polyphosphate 1phosphatase is a negative regulator of abscisic acid and stress signaling in Arabidopsis, Genes Dev., 15:1971–84 (2001).
  • Sanders D., Brownlee C. and Harper J.F., “Communicating with calcium”, Plant Cell, 11:691–706 (1999).
  • Schumaker K.S. and Sze H., “Inositol 1,4,5-trisphosphate releases Ca2+ from vacuolar membrane vesicles of oat roots”, J. Biol. Chem., 262:3944–46 (1987).
  • Wu Y., Kuzma J., Marechal E., Graeff R. and Lee H.C., “Abscisic acid signaling through cyclic ADP-ribose in plants”, Science, 278:2126–30 (1997).