Beta Generalization of Stancu-Durrmeyer Operators Involving a Generalization of Boas-Buck Type Polynomials

Beta Generalization of Stancu-Durrmeyer Operators Involving a Generalization of Boas-Buck Type Polynomials

We deal with beta generalization of Stancu-Durrmeyer operators via a generalization of Boas-Buck type polynomials with the help of analytic functions. Approximation properties are investigated and convergence results are obtained for the operators.

___

  • Szász, O.,“Generalization of S. Bernstein’s polynomials to the infinite interval”, Journal of Research of the National Bureau of Standarde, 45: 239–245, (1950).
  • Jakimovski, A., Leviatan, D.,“Generalized Szász operators for the approximation in the infinite interval”, Mathematica, 11: 97–103, (1969).
  • Ismail, M.E.H.,“On a generalization of Szász operators”, Mathematica, 39: 259–267, (1974).
  • Varma, S., Sucu, S.,İçöz, G., “Generalization of Szász operators involving Brenke type polynomials”, Computers and Mathematics with Applications, 64: 121–127, (2012).
  • Sucu, S., İçöz, G., Varma, S., “On some extensions of Szász operators including Boas-Buck-type polynomials”, Abstract and Applied Analysis, (2012).
  • İçöz, G., Varma, S., Sucu, S., “Approximation by operators including generalized Appell polynomials”, Filomat, 30: 429–440, (2016).
  • İçöz, G., Çekim, B., “Stancu-type generalizations of the Chan-Chyan-Srivastava operators”, Filomat, 30: 3733–3742, (2016).
  • Sucu, S., Varma, S., “Approximation by sequence of operators involving analytic functions”, Mathematics, 7(2): 188, (2019).
  • Sucu, S., Varma, S., “Generalization of Jakimovski−Leviatan type Szász operators”, Applied Mathematics and Computation, 270: 977-983, (2015).
  • Sucu, S., “Dunkl analogue of Szász operators”, Applied Mathematics and Computation, 244: 42- 48, (2014).
  • Cai, Q. B., Yüksel, İ., Dinlemez Kantar, Ü., Çekim, B., “Approximation Properties of Durrmeyer Type of-Bleimann-Butzer and Hahn Operators”, Journal of Function Spaces. Volume 2019, Article ID 7047656, 11 pages (2019).
  • Çekim, B., Dinlemez Kantar, Ü., Yüksel, İ., “Dunkl generalization of Szász Beta‐type operators”, Mathematical Methods in the Applied Sciences, 40 (18): 7697-7704, (2017).
  • Yazıcı, S., Çekim, B., “A Kantorovich type generalization of the Szász operators via two variable Hermite polynomials”, Gazi University Journal of Science, 30(4): 432-440, (2017).
  • Taşdelen, F., Söylemez, D., Aktaş, R., “Dunkl-Gamma type operators including Appell polynomials”, Complex Analysis and Operator Theory, 13(7): 3359-3371, (2019).
  • Aktaş, R., Söylemez, D., Taşdelen, F., “Stancu Type Generalization of Szász-Durrmeyer Operators Involving Brenke-Type Polynomials”, Filomat, 33(3), (2019).
  • Rainville, E.D., “Special Functions”, Macmillan, New York, NY, USA, (1960).
  • Altomare, F., Campiti, M., “Korovkin-Type Approximation Theory and Its Applications”, Appendix A by Michael Pannenberg and Appendix B by Ferdinand Beckhoff, de Gruyter Studies in Mathematics, 17; Walter de Gruyter & Co.: Berlin, Germany, (1994).
  • Devore, R.A., Lorentz, G.G., “Constructive Approximation”, Springer, Berlin, Germany, (1993).
  • Gavrea, I.,Raşa, I., “Remarks on some quantitative Korovkin-type results”, Rev.Anal. Numér. Théor. Approx., 22(2): 173–176, (1993).
  • Zhuk, V.V., “Functions of the Lip1 class and S. N. Bernstein’s polynomials (Russian)”, Vestnik Leningradskogo Universiteta. Matematika, Mekhanika, Astronomiya. Leningrad Univ., Leningrad., 1: 25–30, (1989).