Application of 1,6-Hexanedithiol and 1-Hexanethiol Self Assembled Monolayers on Polycrystalline Gold Electrode for Determination of Fe(II) Using Square Wave Voltammetry

Application of 1,6-Hexanedithiol and 1-Hexanethiol Self Assembled Monolayers on Polycrystalline Gold Electrode for Determination of Fe(II) Using Square Wave Voltammetry

1,6-hexanedithiol and 1-hexanethiol monolayer films modified polycrystalline gold electrodeswere fabricated by using self assembled monolayer method. Modified electrodes used forelectro-catalytic oxidations of iron(II). The calibration curves were obtained in the range of5.00×10-8- 3.85×10-5 mol.L−1and 1.00×10−7- 2.56×10−5 mol.L−1at the Au-HDT and Au-HT,respectively. Detection limit of 1.6×10-8 mol.L−1 and 3.2×10−8 mol.L−1 for iron(II) at the AuHDTand Au-HT, respectively. Validity of the method and applicability of the sensors aresuccessfully tested by determining of Fe(II) in real samples such as drinking water and carobsyrup samples.

___

  • Liu, X.W., Millero, F.J., "The solubility of iron in seawater", Marine Chemistry, 77: 43-54, (2002).
  • Lieu, P.T., Heiskala, M., Peterson, P.A., Yang, Y., "The roles of iron in health and disease", Moleculer Aspects Medicine, 22: 1-87, (2001).
  • Kassem, M.A., Amin, A.S., "Spectrophotometric determination of iron in environmental and food samples using solid phase extraction", Food Chemistry, 141: 1941–1946, (2013).
  • Shaw-Stiffel, T.A., Chronic hepatitis 5nd ed., in: G.L. Mandell, J.E. Bennett, R. Dolin, et al., Principles and practice of infectious diseases, New York: Churchill Livingstone (2000).
  • Internet: World Health Organization Online. http://www.who.int/water_sanitation_health/dwq/chemicals/iron.pdf, 1996.
  • Bowie, A.R., Achterberg, E.P., Mantoura, R.F.C., Worsfold, P.J., "Determination of sub-nanomolar levels of iron in seawater using flow injection with chemiluminescence detection", Analytical Chemistry Acta, 361: 189-200, (1998).
  • De Jong, J.T.M, Boye, M., Schoemann, V.F., Nolting, R.F., De Baar, H.J.W., "Shipboard techniques based on flow injection analysis for measuring dissolved Fe, Mn and Al in seawater", Journal of Environmental Monittoring Home A, 2: 496-502, (2000).
  • Weeks, D.A. and Bruland, K.W., "Improved method for shipboard determination of iron in seawater by flow injection analysis", Analytical Chemistry Acta, 453: 21-32, (2002).
  • Johnson, K.S., Coale, K.H., and Jannasch, H.W., "Analytical chemistry in oceanography", Analytical Chemistry, 64: 1065-1075, (1992).
  • Rijkenberg, M.J.A., Fischer, A.C., Kroon, J.J., Gerringa, L.J.A., Timmermans, K.R., Wolterbeek, H.T., De Baar, H.J.W., "The influence of UV irradiation on the photoreduction of iron in the Southern Ocean", Marine Chemistry, 93: 119-129, (2005).
  • Measures, C.I., Yuan, J. and Resing, J., "Determination of iron in seawater by flow injection analysis using in-line preconcentration and spectrophotometric detection", Marine Chemistry, 50: 3-12, (1995).
  • Blain, S. and Treguer, P., "Iron(II) and iron(III) determination in seawater at the nanomolar level with selective online preconcentration and spectrophotometric determination", Analytical Chemistry Acta, 308: 425-432, (1995).
  • Cha, K.W. and Park, K.W., "Determination of iron(III) with salicylic acid by the fluorescence quenching method", Talanta, 46: 1567-1571, (1998).
  • Pozdniakova, S. and Padarauskas, A., "Speciation of metals in different oxidation states by capillary electrophoresis using pre-capillary complexation with complexones", Analyst, 123: 1497- 1500, (1998).
  • Waite, T.D. and Morel, F.M., "Preparation and properties of a new carbon paste iron selective electrodes and their applications", Analytical Chemistry, 56: 787-792, (1984).
  • Mahmoud, W.H., "Iron ion‐ selective electrodes for direct potentiometry and potentiotitrimetry in pharmaceuticals", Analytical Chemistry Acta, 436: 199-206, (2001).
  • Saleh, M.B., "Iron(III) ionophores based on formyl salicylic acid derivatives as sensors for ion-selective electrodes", Analyst, 125: 179-183, (2000).
  • Bersier, P.M., Howell, J., Bruntlett, C., "Advanced electroanalytical techniques versus atomic absorption spectrometry, inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry in environmental analysis", Analyst, 119: 219-232, (1994).
  • Van den Berg, C.M.G. and Huang, Z.Q., "Determination of iron in seawater using cathodic stripping voltammetry preceded by adsorptive collection with the hanging mercury drop electrode", J. Electroanalytical Chemistry, 177: 269-280, (1984).
  • Ugo, P., Moretto, L.M., Rudello, D., Birriel, E., Chevalet, J., "Trace iron determination by cyclic and multiple square‐ wave voltammetry at nafion coated electrodes. Application to Pore‐ Water Analysis", Electroanalysis, 13: 661-668, (2001).
  • Obata, H. and van den Berg, C.M.G., "Determination of picomolar levels of iron in seawater using catalytic cathodic stripping voltammetry", Analytical Chemistry, 73: 2522–2528, (2001).
  • Van den Berg, C.M.G., "Chemical speciation of iron in seawater by cathodic stripping voltammetry with dihydroxynaphthalene", Analytical Chemistry, 78: 156–163, (2006).
  • Murray, R.W., in: Bard, A.J. (Eds.), In Electroanalytical Chemistry, Marcel Dekker, New York, (1984).
  • Jens, K., Terborg, L., Nowak, S., Telgmann, L., Tokmak, F., Kramer, B.K., Gunsel, A., Wiesmuller, G.A., Waldeck, J., Bremer, C., Karst, U., "Analysis of the Contrast Agent Magnevist® and its Transmetallation Products in Blood Plasma by CE/ESI-TOF-MS", Analytical Chemistry, 81: 3600–3607, (2009).
  • Mandler, D., "Formation, Characterization, and Applications of Organic and Inorganic Nanometric Films", Israel Journal of Chemistry, 50: 306–311, (2010).
  • Shervedani, R.K. and Bagherzadeh, M., "Electrochemical impedance spectroscopy as a transduction method for electrochemical recognition of zirconium on gold electrode modified with hydroxamated self-assembled monolayer", Sensors and Actuators B, 139: 657–664, (2009).
  • Hong, H.G., Park, W. and Yu, E., "Voltammetric determination of electron transfer kinetic parameters in hydroquinone-terminated self-assembled monolayers on gold", J. Electroanalytical Chemistry, 476: 177-181, (1999).
  • Love, J.C., Estroff, L.A., Kriebel, J.K., Nuzzo, R.G., Whitesides, G.M., "Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology", Chemical Reviews, 105: 1103– 1169, (2005).
  • Chaki, N.K. and Vijayamohanan, K., "Self-assembled monolayers as a tunable platform for biosensor applications", Biosensors and Bioelectronics, 17: 1–12, (2002).
  • Ma, H.Y., Yang, C., Yina, B.S., Lia, G.Y., Chen, S.H., Luo, J.L., "Electrochemical characterization of copper surface modified by n-alkanethiols in chloride-containing solutions", Applied Surface Science, 218: 143–153, (2003).
  • Su, L., Gao, F. and Mao, L., "Electrochemical properties of carbon nanotube (CNT) film electrodes prepared by controllable adsorption of CNTs onto an alkanethiol monolayer self-assembled on gold electrodes", Analytical Chemistry, 78: 2651–2657, (2006).
  • Guo, X., Kulkarni, A., Doepke, A., Halsall, H.B., Iyer, S., Heineman, W.R., "Carbohydrate-based label-free detection of Escherichia coli ORN 178 using elec-trochemical impedance spectroscopy", Analytical Chemistry, 84: 241–246, (2012).
  • Barreiros dos Santos M.,, Agusil, J.P., Prieto-Simón, B., Sporer, C., Teixeira, V., Samitier, J., "Highly sensitive detection of pathogen Escherichia coli O157:H7 by electrochemical impedance spectroscopy", Biosensors and Bioelectronics, 45: 174–180, (2013).
  • Geng, P., Zhang, X., Meng, W., Wang, Q., Zhang, W., Jin, L., Feng, Z., Wu, Z., "Self-assembled monolayers-based immunosensor for detection of Escherichia coliusing electrochemical impedance spectroscopy", Electrochimica Acta, 53: 4663–4668, (2008).
  • Brett, C.M.A., Kresak, S., Hianik, T., Brett, A.M.O., "Studies on self-assembled alkanethiol monolayers formed at applied potential on polyerystalline gold electrodes", Electroanalysis, 15: 557-565, (2003).
  • Leniart, A., Brycht, M., Burnat, B., Skrzypek, S., "Voltammetric determination of the herbicide propham on glassycarbon electrode modified with multi-walled carbon nanotubes", Sensors and Actuators B, 231: 54–63, (2016).
  • Lavanya, J. and Gomathi, N., "High-sensitivity ascorbic acid sensor using graphene sheet/graphene nanoribbon hybridmaterial as an enhanced electrochemical sensing platform", Talanta, 144: 655– 661, (2015).
  • Lei, W., Si, W.M., Hao, Q.L., Han, Z., Zhang, Y.H., Xia, M.Z., "Nitrogen-doped graphene modified electrode for nimodipine sensing", Sensor and Actuators B: Chemical, 212: 207–213, (2015).
  • Murray, R.W., Electroanalytical Chemistry, Marcel Dekker, New York, (1984).
  • Gosser, D.K., Cyclic Voltammetry, Simulation and Analysis of Reaction Mechanisms, WileyVCH, New York, (1993).
  • Ermer, J., Miller J.H.McB., (Eds.), Method Validation in Pharmaceutical Analysis, Wiley-VCH Publication, Weinheim, (2005).
  • Zhou, Y., Tang, L., Zeng, G., Zhang, C., Xie, X., Liu, Y., Wang, J., Tang, J., Zhang, Y., Deng, Y., "Label free detection of lead using impedimetric sensor based on ordered mesoporous carbon–gold nanoparticles and DNAzyme catalytic beacons", Talanta, 146: 641-647, (2016).
  • Daniele, M., Antonella, P., Carlo, D., "An analytical method for Fe(II) and Fe(III) determination in pharmaceutical grade iron sucrose complex and sodium ferric gluconate complex", Journal of Pharmaceutical Analysis, 2: 450-453, (2012).
  • Abdoulkadri, A. M., B. G., Paul-Louis, F., "Electrochemical behaviour of iron(II) at a Nafion-1,10- phenanthroline-modified carbon paste electrode: assessing the correlation between preconcentration potential, surface morphology and impedance measurements", Journal de la Societe Ouest-Africaine de Chimie, 39: 41-56, (2015).
  • Kamal, E., Luisa-Roxana, P. M., Karine, G., Michael, H, Cristina-Andreea, A., Eleonora-Mihaela U., Serge C., "Synthesis and electrochemical characterization of original “TEMPO” functionalized multiwall carbon nanotube materials: Application to iron (II) detection", Electrochemistry Communications, 60: 131–134, (2015).
  • Mohammad, B. G., Behrooz, G., Mohammad, H. P., "Anodic stripping voltammetric determination of iron(II) at a carbon paste electrode modified with dithiodianiline (DTDA) and gold nanoparticles (GNP)", Electroanalysis, 23: 1345–1351, (2011).
  • Van Staden, J. F., Matoetoe, M. C., "Simultaneous determination of traces of iron(II) and iron(III) using differential pulse anodic stripping voltammetry in a flow-through conguration on a glassy carbon electrode", Analytica Chimica Acta, 376: 325-330, (1998).