Alternative Support Material to Platinum Catalyst Used for Oxygen Reduction Reaction: Nonporous Carbon

Alternative Support Material to Platinum Catalyst Used for Oxygen Reduction Reaction: Nonporous Carbon

In this study, unlike porous carbon as a conventional catalyst support material in fuel cells, nonporous carbon was synthesized in the presence of different HCl concentrations (0.2 M-1 M) and investigated as a support material for platinum (Pt) catalysts in the oxygen reduction reaction (ORR). Since the micropore volume of the synthesized carbons is negligible, the detected surface areas with Brunauer-Emmett-Teller (BET) method were between the range of 19-23 m2/g. Among the support materials, the carbon-supported Pt catalyst synthesized in the presence of 1 M HCl was investigated electrochemically in terms of hydrogen oxidation (HOR) and ORR half-cell reactions in the three-electrode system. The Pt catalyst supported with nonporous carbon, synthesized using 1 M HCl, reached the maximum limiting current value of -1.2 mA/cm2 (@1600 rpm, 5 mV/s) at ORR hydrodynamic curves. Low internal and charge transfer resistances of the same catalyst in electrochemical impedance spectroscopy (EIS) analysis are attributable to its nonporous structure.

___

  • [1] Barbir, F., Yazici, S., "Status and development of PEM fuel cell technology", International Journal of Energy Research, 32: 369-378, (2008).
  • [2] Jung, N., Chung, D.Y., Ryu, J., Yoo, S.J., Sung, Y.E., "Pt-based nanoarchitecture and catalyst design for fuel cell applications", Nano Today, 9: 433-456, (2014).
  • [3] Du, L., Shao, Y.Y., Sun, J.M., Yin, G.P., Liu, J., Wang, Y., "Advanced catalyst supports for PEM fuel cell cathodes", Nano Energy, 29: 314-322, (2016).
  • [4] Bayrakceken, A., Smirnova, A., Kitkamthorn, U., Aindow, M., Turker, L., Eroglu, I., Erkey, C., "Vulcan-Supported Pt Electrocatalysts for PEMFCs Prepared using Supercritical Carbon Dioxide Deposition", Chemical Engineering Communications, 196: 194-203, (2008).
  • [5] Das, E., Bayrakceken Yurtcan, A., "Effect of carbon ratio in the polypyrrole/carbon composite catalyst support on PEM fuel cell performance", International Journal of Hydrogen Energy, 41: 13171-13179, (2016).
  • [6] Bozkurt, G., Memioglu, F., Bayrakceken, A., "Pt nanoparticles over PEDOT/carbon composites prepared by supercritical carbon dioxide deposition", Applied Surface Science, 318: 223-226, (2014).
  • [7] Guvenatam, B., Ficicilar, B., Bayrakceken, A., Eroglu, I., "Hollow core mesoporous shell carbon supported Pt electrocatalysts with high Pt loading for PEMFCs", International Journal of Hydrogen Energy, 37: 1865-1874, (2012).
  • [8] Ficicilar, B., Bayrakceken, A., Eroglu, I., "Pt incorporated hollow core mesoporous shell carbon nanocomposite catalyst for proton exchange membrane fuel cells", International Journal of Hydrogen Energy, 35: 9924-9933, (2010).
  • [9] Ozturk, A., Bayrakceken Yurtcan, A., "Synthesis of polypyrrole (PPy) based porous N-doped carbon nanotubes (N-CNTs) as catalyst support for PEM fuel cells", International Journal of Hydrogen Energy, 43: 18559-18571, (2018).
  • [10] Caglar, A., Cogenli, M.S., Bayrakceken Yurtcan, A., Kivrak, H., "Effective carbon nanotube supported metal (M=Au, Ag, Co, Mn, Ni, V, Zn) core Pd shell bimetallic anode catalysts for formic acid fuel cells", Renewable Energy, 150: 78-90, (2020).
  • [11] Ozturk, A., Bayrakceken Yurtcan, A., "Raw and pyrolyzed (with and without melamine) graphene nanoplatelets with different surface areas as PEM fuel cell catalyst supports", Carbon Letters, 31: 1191-1214, (2021).
  • [12] Das, E., Alkan Gursel, S., Isıkel Sanli, L., Bayrakceken Yurtcan, A., "Thermodynamically controlled Pt deposition over graphene nanoplatelets: Effect of Pt loading on PEM fuel cell performance", International Journal of Hydrogen Energy, 42: 19246-19256, (2017).
  • [13] Oner, E., Ozturk, A., Bayrakceken Yurtcan, A., "Utilization of the graphene aerogel as PEM fuel cell catalyst support: Effect of polypyrrole (PPy) and polydimethylsiloxane (PDMS) addition", International Journal of Hydrogen Energy, 45: 34818-34836, (2020).
  • [14] Cogenli, M.S., Bayrakceken Yurtcan, A., "Heteroatom doped 3D graphene aerogel supported catalysts for formic acid and methanol oxidation", International Journal of Hydrogen Energy, 45: 650-666, (2020).
  • [15] Das, E., Ozturk, A., Bayrakceken Yurtcan, A., "Electrocatalytical Application of Platinum Nanoparticles Supported on Reduced Graphene Oxide in PEM Fuel Cell: Effect of Reducing Agents of Dimethlyformamide or Hydrazine Hydrate on the Properties", Electroanalysis, 33: 1721-1735, (2021).
  • [16] Bayrakceken Yurtcan, A., Das, E., "Chemically synthesized reduced graphene oxide-carbon black based hybrid catalysts for PEM fuel cells", International Journal of Hydrogen Energy, 43: 18691-18701, (2018).
  • [17] Pethaiah, S.S., Kalaignan, G.P., Ulaganathan, M., Arunkumar, J., "Preparation of durable nanocatalyzed MEA for PEM fuel cell applications", Ionics, 17: 361-366, (2011).
  • [18] Zhao, J.J., Tu, Z.K., Chan, S.H., "Carbon corrosion mechanism and mitigation strategies in a proton exchange membrane fuel cell (PEMFC): A review", Journal of Power Sources, 488: 229434, (2021).
  • [19] Hulicova-Jurcakova, D., Kodama, M., Shiraishi, S., Hatori, H., Zhu, Z.H., Lu, G.Q., "Nitrogen-Enriched Nonporous Carbon Electrodes with Extraordinary Supercapacitance", Advanced Functional Materials, 19: 1800-1809, (2009).
  • [20] Kumar, S.M.S., Hidyatai, N., Herrero, J.S., Irusta, S., Scott, K., "Efficient tuning of the Pt nano-particle mono-dispersion on Vulcan XC-72R by selective pre-treatment and electrochemical evaluation of hydrogen oxidation and oxygen reduction reactions", International Journal of Hydrogen Energy, 36: 5453-5465, (2011).
  • [21] Guha, A., Lu, W.J., Zawodzinski, T.A., Schiraldi, D.A., "Surface-modified carbons as platinum catalyst support for PEM fuel cells", Carbon, 45: 1506-1517, (2007).
  • [22] Yan, X.D., Liu, Y., Fan, X.R., Jia, X.L, Yu, Y.H., Yang, X.P., "Nitrogen/phosphorus co-doped nonporous carbon nanofibers for high-performance supercapacitors", Journal of Power Sources, 248: 745-751, (2014).
  • [23] Xu, F., Qiu, Y.Q., Han, H.J., Jiang, G.S., Zhao, R.X., Zhang, E., Li, H., Wang, H., Kaskel, S., "Manipulation of carbon framework from the microporous to nonporous via a mechanical-assisted treatment for structure-oriented energy storage", Carbon, 159: 140-148, (2020).
  • [24] Xu, F., Lai, Y.J., Fu, R.W., Wu, D.C., "A facile approach for tailoring carbon frameworks from microporous to nonporous for nanocarbons", Journal of Materials Chemistry A, 1: 5001-5005, (2013).
  • [25] Yakout, S.M., El-Deen, G.S., "Characterization of activated carbon prepared by phosphoric acid activation of olive stones", Arabian Journal of Chemistry, 9: S1155-S1162, (2016).
  • [26] Li, J.Y., Ma, L., Li, X.N., Lu, C.S., Liu, H.Z., "Effect of nitric acid, pretreatment on the properties of activated carbon and supported palladium catalysts", Industrial & Engineering Chemistry Research, 44: 5478-5482, (2005).
  • [27] Gonzalez-Garcia, P., "Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications", Renewable & Sustainable Energy Reviews, 82: 1393-414, (2018).
  • [28] Toprak, A., Kopac, T., "Carbon Dioxide Adsorption Using High Surface Area Activated Carbons from Local Coals Modified by KOH, NaOH and ZnCl2 Agents", International Journal of Chemical Reactor Engineering, 15: 1-16, (2017).
  • [29] Demiral, H., Demiral, I., "Surface properties of activated carbon prepared from wastes", Surface and Interface Analysis, 40: 612-615, (2008).
  • [30] Bag, O., Tekin, K., Karagoz, S., "Microporous activated carbons from lignocellulosic biomass by KOH activation", Fullerenes Nanotubes and Carbon Nanostructures, 28: 1030-1037, (2020).
  • [31] Kong, C.S., Kim, D.Y., Lee, H.K., Shul, Y.G., Lee, T.H., "Influence of pore-size distribution of diffusion layer on mass-transport problems of proton exchange membrane fuel cells”, Journal of Power Sources, 108: 185-191, (2002).
  • [32] Soboleva, T., Zhao, X.S., Mallek, K., Xie, Z., Navessin, T., Holdcroft, S., "On the Micro-, Meso- and Macroporous Structures of Polymer Electrolyte Membrane Fuel Cell Catalyst Layers", ACS Applied Materials & Interfaces, 2: 375-384, (2010).
  • [33] Bayrakçeken, A., "Platinum or nickel nanoparticles decorated on silica spheres by microwave irradiation technique", Turkish Journal of Chemistry, 38: 309-316, (2014).
  • [34] Shoaib, A.G.M., El-Sikaily, A., El Nemr, A., Mohamed, A.E.A., Hassan, A.A., "Preparation and characterization of highly surface area activated carbons followed type IV from marine red alga (Pterocladia capillacea) by zinc chloride activation", Biomass Conversion and Biorefinery, 12: 2253-2265, (2022).
  • [35] Girgis, B.S., Khalil, L.B., Tawfik, T.A.M., "Activated Carbon from Sugar-Cane Bagasse by Carbonization in the Presence of Inorganic Acids", Journal of Chemical Technology and Biotechnology, 61: 87-92, (1994).
  • [36] Yang, Y.W., Hou, X.Y., Ding, C.F., Lan, J.L., Yu, Y.H., Yang, X.P., "Eco-friendly fabricated nonporous carbon nanofibers with high volumetric capacitance: improving rate performance by tri-dopants of nitrogen, phosphorus, and silicon", Inorganic Chemistry Frontiers, 4: 2024-2032, (2017).
  • [37] Ambroz, F., Macdonald, T.J., Martis, V., Parkin, I.P., "Evaluation of the BET Theory for the Characterization of Meso and Microporous MOFs", Small Methods, 2: 1800173, (2018).
  • [38] Dhapola, P.S., Sahoo, N.G., Bhattacharya, B., Kumar, Y., Singh, P.K., Gupta, M., "Elaborative Studies on Non-Porous Carbon Materialfor Super Capacitor Application", Macromolecular Symposia, 388: 1900035, (2019).
  • [39] Ozturk, A., Ozcelik, N., Bayrakçeken Yurtcan, A., "Platinum/graphene nanoplatelets/silicone rubber composites as polymer electrolyte membrane fuel cell catalysts", Materials Chemistry and Physics, 260: 124110, (2021).
  • [40] Vengatesan, S., Kim, H.J., Kim, S.K., Oh, I.H., Lee, S.Y., Cho, E., Ha, H.Y., Lim, T-H., "High dispersion platinum catalyst using mesoporous carbon support for fuel cells", Electrochimica Acta, 54: 856-861, (2008).
  • [41] Niyogi, S., Bekyarova, E., Itkis, M.E., McWilliams, J.L., Hamon, M.A., Haddon, R.C., "Solution properties of graphite and graphene", Journal of the American Chemical Society, 128: 7720-7721, (2006).
  • [42] Santiago, D., Rodriguez-Calero, G.G., Rivera, H., Tryk, D.A., Scibioh, M.A., Cabrera, C.R., "Platinum Electrodeposition at High Surface Area Carbon Vulcan-XC-72R Material Using a Rotating Disk-Slurry Electrode Technique", Journal of The Electrochemical Society, 157: F189-F195, (2010).
  • [43] Diaz-Teran, J., Nevskaia, D.M., Lopez-Peinado, A.J., Jerez, A., "Porosity and adsorption properties of an activated charcoal", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 187: 167-175, (2001).
  • [44] Lin, Q., Peng, X., Zhang, Z., "Electrochemical Determination of Hg(II) Ions Based on Biosynthesized Spherical Activated Carbon from Potato Starch", International Journal of Electrochemical Science, 12: 2232-2241, (2017).
  • [45] Avcioglu, G.S., Ficicilar, B., Bayrakceken, A., Eroglu, I., "High performance PEM fuel cell catalyst layers with hydrophobic channels", International Journal of Hydrogen Energy, 40: 7720-7731, (2015).
  • [46] Zhang, M.Y., Yang, C., Wang, Y., Gao, F., Cheng, J., Zhang, J.Y., "High-Performance Supercapacitor Based on Nitrogen and Phosphorus Co-Doped Nonporous Polybenzoxazine-Based Carbon Electrodes", Journal of The Electrochemical Society, 165: A3313-A3320, (2018).