The Effect of Si (111) Substrate Surface Cleaning on Growth Rate and Crystal Quality of MOVPE Grown AlN

In this work, the effect of Si (111) substrate surface cleaning by RCA (Radio Corporation of America) method on growth rate and crystalline quality of epitaxially grown AlN thin films by MOVPE (Metal Organic Vapor Phase Epitaxy) technique is investigated. In situ reflectance system and high resolution X-ray diffraction (HRXRD) technique are used for the analysis of growth rate and crystal quality of epitaxial AlN layers, respectively. Also, The Raman measurement is done to show the effect of the RCA cleaning procedure on the position of the peaks that occurred in the Raman spectra. The results have shown that the surface cleaning of Si (111) substrate by the RCA method removes the oxide layer formed on the surface, also helps to decrease the parasitic reactions and increases the adatom efficiency, results in an increased growth rate of the AlN layer. Besides, surface cleaning of Si (111) substrate by the RCA method has reduced the FWHM value ~5% for ω-2θ scan and ~60% for ω scan of AlN epilayer, indicating an improvement in crystal quality.

___

  • [1] Morkoç, H., Nitride Semiconductor Devices: Fundamentals and Applications, Wiley, (2013).
  • [2] Kolluri, S., Pei, Y., Keller, S., Denbaars, S. P., Mishra, U. K.,“ RF performance of N-polar AlGaN/GaN MIS-HEMTs grown by MOCVD on sapphire substrate”, IEEE Electron Device Letters, 30(6): 584-586, (2009).
  • [3] Cai, Q., Ge, M., Xue, J., Hu, L., Chen, D., Lu, H., Zhang, R., Zheng, Y., “An improved design for solar-blind AlGaN avalanche photodiodes”, IEEE Photonics Journal, 9(4): 1-7, (2017).
  • [4] Demir, I., Altuntas, I., Kasapoğlu, A., Mobtakeri, S., Gur, E., Elagoz, S., “Microstructural evolution of MOVPE grown GaN by the carrier gas”, Semiconductors, 52(16): 2030-2038, (2018).
  • [5] Okumura, H., Suihkonen, S., Lemettinen, J., Uedono, A., Zhang, Y., Piedra, D., Palacios, T., “AlN metal–semiconductor field-effect transistors using Si-ion implantation”, Japanese Journal of Applied Physics, 57(4S): 04FR11, (2018).
  • [6] Wierer, Jr. JJ, Tsao, J.Y., Sizov, D.S., “The potential of III‐nitride laser diodes for solid‐state lighting”, Physica Status Solidi (c), 1(3‐4): 674-677, (2014).
  • [7] Altuntas, I., Demir, I., Kasapoğlu, A.E., Mobtakeri, S., Gur, E., Elagoz, S., “The effects of two-stage HT-GaN growth with different V/III ratios during 3D–2D transition”, Journal of Physics D: Applied Physics, 51(3): 035105, (2017).
  • [8] https://compoundsemiconductor.net/article/103024/GaN_device_Market_Worth_over_34_Billion_by_2024. Access date: 08.12.2017.
  • [9] Ozpineci, B., Tolbert, L.M., “Comparison of wide-bandgap semiconductors for power electronics applications”, United States, Department of Energy, (2004).
  • [10] https://compoundsemiconductor.net/article/102889/GaN_Device_Market_To_Reach_2247_Billion_By_2023%7BfeatureExtra%7D. Access date: 10.11.2017.
  • [11] Magnuson, M., Mattesini, M., Höglund, C., Birch, J., & Hultman, L., “Electronic structure and chemical bonding anisotropy investigation of wurtzite AlN”, Physical Review B, 80(15): 155105, (2009).
  • [12] O’Leary, S.K., Siddiqua, P., Hadi, W.A., Foutz, B.E., Shur, M.S., & Eastman, L.F., “Electron transport within III-V nitride semiconductors”, In Springer Handbook of Electronic and Photonic Materials, 1-1, Springer, Cham, (2017).
  • [13] Cheng, Z., Koh, Y.R., Mamun, A., Shi, J., Bai, T., Huynh, K., Yates, L., Liu, Z., Li, R., Lee, E., Liao, M. E., Wang, Y., Yu, H. M., Kushimoto, M., Luo, T., Goorsky, M. S., Hopkins, P. E., Amano, H., Khan, A. and Graham, S., “Experimental observation of high intrinsic thermal conductivity of AlN”, Physical Review Materials, 4(4): 044602, (2020).
  • [14] Young, E.C., Yonkee, B.P., Wu, F., Oh, S.H., DenBaars, S.P., Nakamura, S., Speck, J. S., “Hybrid tunnel junction contacts to III–nitride light-emitting diodes”, Applied Physics Express, 9(2): 022102, (2016).
  • [15] Demir, I., Li, H., Robin, Y., McClintock, R., Elagoz, S., Razeghi, M., “Sandwich method to grow high quality AlN by MOCVD”, Journal of Physics D: Applied Physics, 51(8): 085104, (2018).
  • [16] Yan, J., Wang, J., Zhang, Y., Cong, P., Sun, L., Tian, Y., Zhao, C., Li, J., “AlGaN-based deep-ultraviolet light-emitting diodes grown on high-quality AlN template using MOVPE”, Journal of Crystal Growth, 414: 254-257, (2015).
  • [17] Creighton, J. R., Wang, G. T., Breiland, W. G., Coltrin, M. E., “Nature of the parasitic chemistry during AlGaInN OMVPE”, Journal of Crystal Growth, 261(2-3): 204-213, (2014).
  • [18] Wang, T.Y., Liang, J.H., Fu, G.W., Wuu, D.S., “Defect annihilation mechanism of AlN buffer structures with alternating high and low V/III ratios grown by MOCVD”, CrystEngComm, 18(47): 9152-9159, (2016).
  • [19] Zhao, D., Zhu, J., Jiang, D., Yang, H., Liang, J., Li, X., Gong, H. M., “Parasitic reaction and its effect on the growth rate of AlN by metalorganic chemical vapor deposition”, Journal of Crystal Growth, 289(1): 72-75, (2006).
  • [20] Demir, I,, Robin, Y., McClintock, R., Elagoz, S., Zekentes, K., Razeghi, M., “Direct growth of thick AlN layers on nanopatterned Si substrates by cantilever epitaxy”, Physica Status Solidi (a), 214(4): 1600363, (2017).
  • [21] Kukushkin, S., Osipov, A., Sergeeva, O., Kiselev, D., Bogomolov, A., Solnyshkin, A., Kaptelov, E. Y., Senkevich, S. V., Pronin, I. P., “Pyroelectric and piezoelectric responses of thin AlN films epitaxy-grown on a SiC/Si substrate”, Physics of the Solid State, 58(5): 967-970, (2016).
  • [22] Kurose, N., Ozeki, K., Araki, T., Iwata, N., Kamiya, I., Aoyagi, Y., “Realization of conductive AlN epitaxial layer on Si substrate using spontaneously formed nano-size via-holes for vertical AlGaN high power FET”, Compound Semiconductor Week (CSW) [Includes 28th International International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS), IEEE, (2016).
  • [23] Huck, L. A., Buriak, J. M., “Toward a mechanistic understanding of exciton-mediated hydrosilylation on nanocrystalline silicon”, Journal of the American Chemical Society, 134(1): 489-497, (2012).
  • [24] Kern, W., “Overview and evolution of silicon wafer cleaning technology”, Handbook of Silicon Wafer Cleaning Technology: Elsevier, 3-85, (2018).
  • [25] Lafatzis, D., Mergia, K., “Oxidation behaviour of Si wafer substrates in air”, Journal of Applied Physics, 114(14): 144308, (2013).
  • [26] Bera, B., “Silicon wafer cleaning: a fundamental and critical step in semiconductor fabrication process”, International Journal of Applied Nanotechnology, 5(1): 8-13, (2019).
  • [27] Zhao, M. Y. , Self-aligned polysilicon gate metal-oxide-semiconductor field effect transistor for large area electronics, Doctoral dissertation, School of Engineering Science-Simon Fraser University, (2005).
  • [28] Huang, L., Li, Y., Wang, W., Li, X., Wang, H., Zhang, Z., Li, G., “Growth of high-quality AlN epitaxial film by optimizing the Si substrate surface”, Applied Surface Science, 435: 163-169, (2018).
  • [29] Buegler, M., Gamage, S., Atalay, R., Wang, J., Senevirathna, M., Kirste, R., Xu, T., Jamil, M., Ferguson, I., Tweedie, J., Collazo, R., Hoffmann, A., Sitar, Z., Dietz, N., “Growth temperature and growth rate dependency on reactor pressure for InN epilayers grown by HPCVD”, Physica Status Solidi (c), 8(7‐8): 2059-2062, (2011).
  • [30] Demir, I., Elagoz, S., “V/III ratio effects on high quality InAlAs for quantum cascade laser structures”, Superlattices and Microstructures, 104: 140-148, (2017).
  • [31] Meng, J., Jaluria, Y., “Numerical Simulation of GaN Growth in a MOCVD Process”, ASME International Mechanical Engineering Congress and Exposition, (2011).
  • [32] Ni, J., Hao, Y., Zhang, J., Yang, L., “Effect of reactor pressure on the growth rate and structural properties of GaN films”, Chinese Science Bulletin, 54(15): 2595-2598, (2009).
  • [33] Demir, I., Altuntas, I., Bulut, B., Ezzedini, M., Ergun, Y., Elagoz, S., “Comprehensive growth and characterization study on highly n-doped InGaAs as a contact layer for quantum cascade laser applications”, Semiconductor Science and Technology, 33(5): 055005, (2018).
  • [34] Demir, I., Kocak, Y., Kasapoğlu, A.E., Razeghi, M., Gur, E., Elagoz, S., “AlGaN/AlN MOVPE heteroepitaxy: pulsed co-doping SiH4 and TMIn”, Semiconductor Science and Technology, 34(7): 075028, (2019).
  • [35] Zhang, J., Kuokstis, E., Fareed, Q., Wang, H., Yang, J., Simin, G., Khan, M., A, “Pulsed atomic layer epitaxy of quaternary AlInGaN layers”, Applied Physics Letters, 79(7): 925-927, (2001).
  • [36] Adachi, S., Optical Constants of Crystalline and Amorphous Semiconductors: Numerical Data and Graphical Information, Springer Science & Business Media, (2013).
  • [37] Schinke, C., Christian Peest, P., Schmidt, J., Brendel, R., Bothe, K., Vogt, M. R., Kröger, I., Winter, S., Schirmacher, A., Lim, S., Nguyen, H. T., MacDonald, D., “Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon”, AIP Advances, 5(6): 067168, (2015).
  • [38] Elagoz, S., & Demir, I., “Growth of InGaAs/InAlAs superlattices by MOCVD and precise thickness determination via HRXRD”, Gazi University Journal of Science, 29(4): 947-951, (2016).
  • [39] Marciszko, M., “Diffraction study of mechanical properties and residual stresses resulting from surface processing of polycrystalline materials”, Ecole nationale supérieure d'arts et métiers-ENSAM; AGH University of Science and Technology, Cracovie, Pologne, (2013).
  • [40] Nilsson, D., Janzén, E., & Kakanakova-Georgieva, A., “Lattice parameters of AlN bulk, homoepitaxial and heteroepitaxial material”, Journal of Physics D: Applied Physics, 49(17): 175108, (2016).
  • [41] Tran, B.T., Maeda, N., Jo, M., Inoue, D., Kikitsu, T., & Hirayama, H., “Performance improvement of AlN crystal quality grown on patterned Si (111) substrate for deep UV-LED applications”, Scientific Reports, 6(1): 1-6, (2016).
  • [42] Chandrasekar, H., Mohan, N., Bardhan, A., Bhat, K., Bhat, N., Ravishankar, N., & Raghavan, S., “An early in-situ stress signature of the AlN-Si pre-growth interface for successful integration of nitrides with (111) Si”, Applied Physics Letters, 103(21): 211902, (2013).
  • [43] Altuntas, I., Kocak, M.N., Yolcu, G., Budak, H.F., Kasapoğlu, A.E., Horoz, S., Gur,E., Demir, I., “Influence of the PALE growth temperature on quality of MOVPE grown AlN/Si (111)”, Materials Science in Semiconductor Processing, 127: 105733, (2021).
  • [44] Trodahl, H., Martin, F., Muralt, P., & Setter, N., “Raman spectroscopy of sputtered AlN films: E2 (high) biaxial strain dependence”, Applied Physics Letters, 89(6): 061905, (2006).
  • [45] Abd Rahman, M.N., Talik, N.A., Khudus, M.I.A., Sulaiman, A.F., Allif, K., Zahir, N.M., & Shuhaimi, A., “Ammonia flux tailoring on the quality of AlN epilayers grown by pulsed atomic-layer epitaxy techniques on (0001)-oriented sapphire substrates via MOCVD”, CrystEngComm, 21(12): 2009-2017, (2019).
  • [46] Wagner, J.M., & Bechstedt, F., “Electronic and phonon deformation potentials of GaN and AlN: ab initio calculations versus experiment”, Physica Status Solidi (b), 234(3): 965-969, (2002).