Band Structure and Optical Properties of BiOCl: Density Functional Calculation

The electronic band structures, density of states (DOS) and optical properties of  BiOCl Crystal are investigated using the density functional theory under the local density approximation (LDA). The obtained electronic band structure show that BiOCl crystal has an indirect forbidden band gap of 2.45 eV. The structural optimization for BiOCl has been performed using the LDA. The result of the structure optimization of BiOCl have been compared with the experimental results and have been found to be in good agreement with these results. The linear photon-energy dependent dielectric functions and some optical properties such as the energy-loss function, the effective number of valence electrons and the effective optical dielectric constant are calculated.   

___

  • Keramidas, K.G., Voutsas, G.P., and Rentzeperis, P.I., "The crystal structure of BiOCl", Z. Kristallogr. 205: 35-40, (1993).
  • Peng, H., Chan, C.K., Meister, S.M., Zhang, X.F., and Cui,Y., "Shape evolution of layer-structured bismuth oxychloride nanostructures via low- temperature chemical vapor transport", Chem. Mater. 21: 247-252, (2009.
  • Zhang, K.-L., Liu, C.-M., Huang, F.-Q., Zheng, C., and Wang, W.-D., "Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst", Environmental 68: 125-129, (2006).
  • Huang, W.L., and Zhu, Q., "DFT calculations on the electronic structures of BiOX (X=F, Cl, Br, I) photocatalysts with and without semicore Bi 5d states", Journal of Computational Chemistry 0: 8, (2008).
  • Mulliken,R.S., "Electronic population analysis on LCAO MO molecular wave functions-I", J. Chem. Phys. 23: 1833, (1955).
  • Segall, M.D., Pickard, C.J., Shah, R., and Payne, M.C., "Population analysis in plane wave electronic structure calculations", Mol. Phys. 89: , (1996).
  • Segall, M.D., Shah, R., Pickard, C.J., and Payne,M.C., " Population analysis of plane wave electronic structure calculations of bulk materials", Phys. Rev. B 54: 16317-16320, (1996).
  • Kohn, W., and Sham, L.J., "Self-consistent equations including exchange and correlation effects", Phys. Rev. 140: A1133-A1138, (1965).
  • Ordejon, P., Artacho, E., and Soler, J. M., "Selfconsistent order-N density-functional calculations for very large systems", Phys. Rev. B (Rapid Common) 53: R 10441-R10444, (1996).
  • Soler, J.M., Artaeho, E., Gole, J.D., Garsia, A., Ordejon, J. P., and Sanchez-portal, D., "The SIESTA method for ab initio order-N materials simulation", J. Phys: Condens Matter 14: 2745- , (2002).
  • Ceperley, D.M., and Alder, M.J., "Ground state of the electron gas by a stochastic method", Phys. Rev. Lett. 45: 566-569, (1980).
  • Troullier, N. J., and Martins, L., "Efficient pseudopotentials for plane-wave calculations", Phys. Rev. B 43: 1993-2006, (1991).
  • Sankey, O.F., and Niklewski, D.J., "Ab initio multicenter tight-binding model for molecular- dynamics simulations and other applications in covalent systems", Phys. Rev B 40: 3979-3995, (1989).
  • Murnaghan, F.D., "The compressibility of media under extreme pressures", Proc. Nat. Acad. Sci. USA 30: 244-247, (1944).
  • Li, L., Cao, R., Wang, Z., Li, J., and Qi, L., "Template synthesis of hierarchical Bi2E3 (E=S, Se, Te) core-shell microspheres and their electrochemical and photoresponsive properties", J. Phys. Chem. C 113: 18075- , (2009).
  • Levine, Z.H., and Allan, D.C., "Linear optical response in silicon and germanium including self-energy effects", Phys. Rev. Lett. 63: 1719- , (1989).
  • Philipp, H., and Ehrenreich, RH., "Optical properties of semiconductors", Phys. Rev. 129: 1560, (1963).
  • Kovalev, O.V., Representations of the Crystallographic Space Groups. Irreducible Representations Induced Representations and Corepresentations, Amsterdam: Gordon and Breach (1965).
  • Marton, L., "Experiments on low-energy electron scattering and energy losses", Rev. Mod. Phys. : 172-183, (1956).