ON THE NORMS OF CIRCULANT MATRICES WITH THE COMPLEX FIBONACCI AND LUCAS NUMBERS

In this paper, we compute the norms of circulant matrices with the complex Fibonacci and Lucas numbers. Moreover, we give golden ratio in complex Fibonacci numbers.In some scientific areas such as signal processing, coding theory and image processing, we often encounter circulant matrices. An n n  matrix C is called a circulant matrix if it is of the form 0 1 1 1 0 2 2 1 3 1 2 0 n n n n n n c c c c c c C c c c c c c                   or an n n matrix C is circulant if there exist0 1 1 , , ,nc c c such that the i, j entry of C is j i n mod c , where the rows and columns are numberedfrom 0 ton 1and kmodn means the number between 0ton 1that is congruent to kmodn. Thus, we denote thecirculant matrix C as C Circ c c c   0 1 1 , , ,n . Anycirculant matrix has many elegant properties. Some ofthem are [6,12]

___

  • Altınışık, E., Yalçın, N.F. and Büyükköse, Ş., “Determinants and inverses of circulant matrices with complex Fibonacci numbers”, Special Matrices, 3:82-90 (2015).
  • Atkin A.O.L., Boros,E., Cechlarova, K.U. and N. Peled, “Powers of Circulants in Bottlenack Algebra”, Linear Algebra and Its Appl., 258: 137-148 (1997).
  • Bahsi, M. and Solak, S., “On the circulant matrices with arithmetic sequence”, Int. J. Cont. Math. Sciences, 5(25): 1213 – 1222 (2010).
  • Bose, A. and Mitra, J., “Limiting Spectral Distribution of a Special Circulant”, Statistics & Prob. Let., 60: 111-120 (2002).
  • Civciv, H. and Türkmen, R., “Notes on norms of circulant matrices with Lucas number”, Int. Journal for Inf. and System Sci., 4(1): 142-147 (2008).
  • Davis, P.J., Circulant Matrices, Wiley, New York, Chichester, Brisbane, 1979.
  • Hladnik, M., “Schur Norms of Bicirculant Matrices”, Linear Algebra and Its Appl., 286: 261-272 (1999).
  • Horadam, A.F., “Complex Fibonacci numbers and Fibonacci quaternions”, Amer. Math. Monthly 70: 289-291 (1963).
  • Horn, R.A., Johnson, C.R., Matrix Analysis, Cambridge University Press, Cambridge, 1985.
  • Jiang, Z., Xin, H. and Lu, F., “Gaussian Fibonacci circulant type matrices”, Abstr. Appl. Anal., Art. ID 592782, 10 pp, (2014).
  • Ipek, A., “On the spectral norms of circulant matrices with classical Fibonacci and Lucas numbers entries”, Appl. Math. Comp. 217: 6011-6012 (2011).
  • Karner, H., Schneid, J., and Ueberhuber, C.W., “Spectral Decomposition of Real Circulant Matrices”, Linear Algebra and Its Appl., 367: 301-311 (2003).
  • Shen, S. and Cen, J., “On the bounds for the norms of r- Circulant Matrices with the Fibonacci and Lucas Numbers”, Appl. Math. Comput., 216: 2891-2897 (2010).
  • Shen, S.Q., Cen, J.M. and Hao, Y., “On the determinants and inverses of circulant matrices with and Lucas numbers”, Appl. Math. Comput., 217: 9790-9797 (2011).
  • Solak, S., “On the norms of circulant matrices with the Fibonacci and Lucas numbers”, Appl. Math. Comp. 160: 125-132 (2005).
  • Solak, S., Erratum to "On the Norms of Circulant Matrices with the Fibonacci and Lucas Numbers" [Appl. Math. Comp., 160, (2005), 125-132], Appl. Math. Comp., 190: 1855-1856 (2007).
  • Solak, S. and Bozkurt, D., “Some bounds on matrix and operator norms of almost circulant, Cauchy-Toeplitz and Cauchy-Hankel matrices”, Math. Comp. Appl. Int. J., 7(3): 211-218 (2002).
  • Tuğlu, N. and Kızılateş C., “On the Norms of Some Special Matrices with the Harmonic Fibonacci Numbers”, Gazi University Journal of Science, 28(3): 497-501 (2015).
  • Vajda, S., Fibonacci & Lucas Numbers, and the Golden Section. West Sussex, England: Ellis Horwood Limited, 1989.
  • Zhang, S., Jiang, Z. and Liu, S., “An Application of the Gröbner Basis in Computation for the Minimal Polynomials and Inverses of Block Circulant Matrices”, Linear Algebra and Its Appl., 347: 101-114 (2002).