Synthesis, Characterization and the Photodynamic Activity against Some Gram negative and positive Bacteria of Novel Subphthalocyanine Derivative

A specific tris(3,5-di-tert-butyl-4-hydroxyphenyl)Subphthalocyaninehydroxyde (SubPc-1) derivative was synthesized and the structure of SubPc-1 was confirmed by UV-Vis, Fluorescence, FTIR, 1H NMR, 13C NMR and MALDI-TOF-MS spectroscopy. Its thermal stability and photostability tests were checked by using TGA and solar simulator, respectively. In addition, the singlet oxygen produced capacity of amphiphilic SubPc-1 was determined for PDT studies. Besides, the photodynamic activity of this novel product against some of gram negative bacteria (Escherichia coli, Pseudomonas aeruginosa) and gram positive bacteria (Staphylococus aureus, Enterococcus faecalis) has been investigated by using a xenon lamp which emits light in the ultraviolet-visible region and is simulated for solar light as the illumination source. It was determined that the peripheral hydrophilic groups provided great opportunities in inactivation and solubility studies. This new amphiphilic macromolecule was especially found as an effective photosensitizer against gram positive bacteria in PDT, in particular.

___

  • Claessens, Torres, T., "Singular Nonplanar Aromatic Compounds-Synthesis, Reactivity, and Physical Properties”, Chem. Rev, 102, 835-853,(2002).
  • Zdravkovski, D., Milletti, M.C., “A comparison of structural and electronic characteristics among subphthalocyanine and phthalocyanine complexes”, Journal of Molecular structure: THEOCHEM, 717, 85-89, (2005).
  • Kobayashi, N., Kondo, R., Nakayama, T., Osa, T., “Near-infrared absorbing dyes”, Review, J.Am.Chem.Soc. 112, 9640, (1990).
  • Gong, X.D., Xiao, H.M., Gao, P., Tian, H.,“A density functional theory study of the structure and subphthalocyanines”, Journal of Molecular structure: THEOCHEM, 587, 189-197, (2002). Matlaba, substituents and solvents on the photochemical properties of zinc phthalocyanine complexes and their protonated derivatives “, Polyhedron, 2463-2472, (2002). T., “Effects of
  • González-Rodríguez, D., Torres, T., Guldi, D.M., Rivera, J., Echegoyen, L. "Energy transfer processes in novel subphthalocyanine- fullerene ensembles”, Organic Letters, Vol:4, No:3, 335-338, (2002).
  • Spesia, M.S., Durantini, E.N., “Synthesis and antibacterial photosensitizing properties of a novel tricationic subphthalocyanine derivative “, Dyes and Pigments, 229-237, (2008). Scalise, properties, and photodynamic inactivation of E.N., “Synthesis,
  • Escherichia coli using a cationic and a noncharged Zn(II) pyridyloxyphthalocyanine derivatives Chemistry, 13, 3037-3045 (2005).
  • Ackroyd, R., Kelty, C., Brown, N., Reed, M., “The photodynamic therapy”, Photochem. Photobiol. 74, 656-669 (2001). and Lang, K., Mosinger, J., Wagnerova, D.M.,
  • “Review;Photophysical porphyrinoid sensitizers non-covalently bound to host molecules; models for photodynamic therapy “, Coordination Chem. Reviews, 248, 321- 350, (2004). properties of
  • Macdonald, I.J., Dougherty, T.J., “Basic principles J.Porphyrins&Phthalocyanines, 5, 105-129, (2001). therapy”,
  • Kantonis, G.; Trikeriotis, M.; Ghanotakis, D.F., with “The antimicrobial photodynamic therapy”, J. Photochem. Photobiol. A: Chem., 185, 62-66, (2007). in
  • Atilla, D., Durmus, M., Yılmaz, Gürek, A.G., Ahsen V. and Nyokong, T., “Synthesis, Photophysical and Photochemical Properties of Poly(oxyethylene) Phthalocyaninato oxotitanium(IV) Complexes”, Eur. J. Inorg. Chem., 3573-3581, (2007). New
  • Kassab, K., Fabris, C., Defilippis, M.P., Dei, D., Fantetti, L., Roncucci, G., Reddi, E., Jori, G., “Skin-photosensitizing properties of Zn(II)-2(3), 9(10), methylpiperidinyl) administered J.Photochem.Photobiol.B:Biol. 55, 128-137, (2002). topically mice.”, to
  • Pandey, R.K. , “Photo physical and biological characteristics of metallo- phthalocyanines for applications J.Porphyrins&Phthalocyanines, 4, 368-373, (2000). PDT”,
  • Peeva, M., Shopova, M., Michelsen, U., Wörhle, D., Petrov, G., Diddens, H., “In vitro and in- vivo benzonaphthoporphyrazines as photosensitizers for PDT”, J.Porphyrins & Phthalocyanines, 5, 645-651, (2001). cationic Zn(II)
  • Sakamoto, K., Kato, T., Kawaguchi, T., Ohno- Okumura, E., Urano, T., Yamaoka, T., Suzuki, S., Cook, M.J., “Photosensitizer efficacy of non- peripheral alkylbenzopyridoporphyrazines photodynamic therapy of cancer”, J. Photochem. Photobiol. A: Chem., 153, 245-253, (2002). for
  • Nakae, Y., Fukusaki, E.-i., Kajiyama, S.-i., Kobayashi, A., Sakata, I., “Convenient screening methods for the photosensitivity”, J. Photochem. Photobiol. A: Chem., 171, 91-95, (2005).
  • Giuntini, F.; Raoul, Y.; Dei, D.; Municchi, M.; Chiti, G. ; Fabris, C.; Colautti, P.; Jori, G.; Roncucci, G.,” Synthesis of tetrasubstituted Zn(II)-phthalocyanines carboranyl-units as potential BNCT and PDT agents “, Tetrahedron letters, 46, 2979-2982, (2005). carrying four
  • Kudrevich, S., Brasseur, N., La Mandeleine, C., Gilbert, S., van Lier, J.E., “Studies on the synthesis phthalocyanines macrocyclic moieties”, J. Med. Chem., 40, 3897-3904, (1997). of novel donor mixed
  • Gabor, F.; Csik, G.; Ronto, G., “Photodynamic therapy: a new antimicrobial approach”, Med. Sci Monit., 3(3), 294-298, (1997).
  • Mantavera, V., Kussovski, V., Angelov, I., Borisova, E., Avramov, L., Schnurfeil, G., Wöhrle, D., “Photodynamic activity of water- soluble phthalocyanine zinc(II) complexes against &Bioorganic&&&&Med. Chem., 15, 4829-4835, (2007). microorganisms”,
  • Kaliya, O.L., Lukyanets, E.A., Vorozhtsov, G.N., A. A. Pashkovskaya, I. V. Perevoshchikova, V. E. Maizlish, G. P. Shaposhnikov, E. A. Kotova and Yu. N. Antonenko , “Interaction of tetrasubstituted phthalocyanine with artificial and natural membranes”, Phthalocyanines, 3, 592-610, (1999). J.Porphyrins &
  • (a) Bonnet, R., Martinez, G., « Tetra sulfunated phthalocyanine nickel Tetrahedron, 57, 9513-9547, (2001). (b)
  • O’Riordan, K.; Akilov, O.E.; Hasan, T., “The potential for photodynamic therapy in the treatment Photodiagnosis and Photodynamic Therapy, 2, 247-262, (2005). assemblies”, of infections” ,
  • Minnock, A.; Vernon, D. I.; Schofield, J.; Griffiths, J. ; Parish, J.H.; Brown, S.B., “Photoinactivation of bacteria. Use of a cationic water photoinactivate both gram-negative and gram- positive bacteria.”, J. Photochem. Photobiol. B: Biol. 32, 159-164,(1996). to
  • Minnock, A., Vernon, D. I., Schofield, J., Griffiths, J., Parish, J.H., Brown, S.B., “Photodynamic proposed as a potentially topical, non-invasive approach suitable proliferating neoplastic cells”, Antimicrob. Agents Chemother. 44 (3) 522- 527, (1996). therapy is
  • Lacey, J.A., Phillips, D., “The photosensitisation coli of Escherichia using disulphonated aluminium phthalocyanine”, J. Photochem. Photobiol. A: Chem., 142, 145-150, (2001).
  • Dupouy, E.A., Lazzeri, D., Durantini, E.N., “Photodynamic activity of cationic Pcs on E- coli”, J. Photochem. Photobiol., Sci. 3, 992- 998, (2004).
  • Humberstone, P., Clarkson, G. J,. McKeown, N. B. and Treacher, K. E., “Synthesis and liquid crystal properties of phthalocyanine derivatives containing both alkyl and readily oxidised phenolic substituents”, J. Mater. Chem., 6, 315- 322, (1996).
  • Clarkson, G.J., Humberstone, P., Mckeown, N.B., “Synthesis of a Phthalocyanine Derivative Containing Easily Oxidized Sterically Hindered Phenolic Substituents”, Chem. Commun, 1979- 1980, (1997).
  • Yang JG, Onyebuagu W., “Synthesis and characterization phthalocyanines”, J Org Chem, 55, 2155, (1990). disubstituted
  • Yukruk, F., Dogan, A.L., Canpinar, H., Guc, D., Akkaya, E.U., “(PDI) Dyes as Potential Sensitizers for Photodynamic Therapy”, Org. Lett. 7(14), 2885-2887, (2005).
  • Seven, O., Dindar, B.,Aydemir, S., Cilli, F., properties “"Synthesis, activities of some Zinc(II) phthalocyanines against Escherichia coli and Staphylococcus aureus”, J.Porphyrins & Phthalocyanines, 12(8), 953-963, (2008). and photodynamic