Density Functional Calculations of the Electronic Band Structure and Optical Properties of KCaF3

The electronic band structure and optical properties of cubic KCaF3 are studied using the density functional theory. The calculated band structure of cubic KCaF3 shows an indirect band gap with two values of 5.95 eV and 5.94 eV at the M ® G and G ® R lines of Brillouin zone, respectively. The structural optimization has been performed using the generalized gradient approximation (GGA). The calculated structure optimization of KCaF3 has been compared with experimental results. Good agreement between theoretical and experimental results was observed. Moreover, some optical constants such as energy-loss functions for volume and surface, coefficients of extinction, reflectivity and absorption, refractive index and effective number of valence electrons per unit cell participating in the inter-band transitions and the linear photon-energy-dependent dielectric functions have been calculated.  PACS number: 71.15.Mb; 74.25.Jb; 74.25.GzKeywords: Density functional theory, Electronic structure; Optical properties  

___

  • Demetriou, D. Z., Catlow, C. R. A., Chadwick, A. V., Mclntyre, G. J. and Abrahams, I., “The Anion Disorder in the Perovskite Fluoride KCaF3”, Solid State Ionics, 176: 1571 - 1575 (2005).
  • Daniel, P. H., Rousseau, M., and Toulouse, J., “Raman Scattering Study of Potassium Calcium Fluoride KCaF3”, Phys. Status. Solidi. (b), 203: 327 - 335 (1997).
  • Flocken J. W., Guenther R. A., Hardy J. R., and Boyer, L. L., “A Priori Predictions of Phase Transitions in KCaF3 and RbCaF3: Existence of a New Ground State”, Phys. Review Lett, 56: 1738 - 1741 (1986).
  • Chornodolskyy, Y., Syrotyuk, S., Stryganyuk, G., Voloshinovskii, A. and Rodnyi P., “Electronic Energy Structure and Core-Valence Luminescence of ABX3” (A = K, Rb, Cs; B = Ca; X = F), Journal of Physical Studies, 4: 421 - 426 (2007).
  • Watson, G. W., Parker, S. C. and Wall, A., J., “Molecular Dynamics Simulation in Fluoride Perovskites”, J. Phys. Condens. Matter, 42: 2097-2108 (1992).
  • Rousseauy, M., Daniely, Ph. and Hennion, B., “The dynamic signature of highly anisotropic correlation near the phase transition in KCaF3”, J. Phys. Condens. Matter, 9: 8963 - 8971 (1997).
  • Troullier, N., Martins, J.L., “Efficient Pseudopotentials for Plane-wave Calculations”, Phys. Rev. B, 43: 1993-2006 (1990).
  • J Perdew, J. P., Burke, K., Ernzerhof, M., “Generalized Gradient Approximation Made Simple”, Phys. Rev. Lett., 77: 3865-3868 (1996).
  • Kohn, W., Sham, L.J., “Self-Consistent Equations Including Exchange and Correlation Effects”, Phys. Rev., 140: A1133-A1138 (1965).
  • Payne, M.C., Teter, M. P., Allan, D.C., Arias, T.A., Joannopoulos, J.D., “Iterative Minimization Techniques for Ab initio Total-energy Calculations: Molecular Dynamics and Conjugate Gradients”, Rev. Mod. Phys., 64: 1045-1097 (1992).
  • Gonze, X., Beuken, J.M., Caracas, R., Detraux, F., Fuchs, M., Rignanese, G. M., Sindic, L., Verstrate, M., Zerah, G., Jollet, F., Torrent, M., Roy, A., Mikami, M., Ghosez, P., Raty, J. Y., and Allan, D. C., “First-principle Computation of Material Properties: the ABINIT Software Project”, Comput. Mater. Sci., 25: 478-492 (2002).
  • Monkhorst, H.J., Pack, J. D., “Special Points for Brillouin-zone Integrations”, Phys. Rev. B, 13: 5188-5192 (1976).
  • Hughes, J.L.P., Sipe, J.E., “Calculation of Secondorder Optical Response in Semiconductors”, Phys. Rev. B, 53:10751-10763 (1996).
  • K. S. Aleksaudrov, A. T. Anistratov, B. V. Beznosikov and N. B. Fedoseeva, Science Norosibirsk (in Russian), (1981).
  • Philipp, H.R., Ehrenreich, H., “Optical Properties of Semiconductors”, Phys. Rev., 129: 1550-1560 (1963).