EMP Fusion

This paper introduces a novel fusion scheme, called EMP Fusion, which has the promise of achieving breakeven and realizing commercial fusion power. The method is based on harnessing the power of an electromagnetic pulse generated by the now well-developed flux compression technology. The electromagnetic pulse acts as a means of both heating up the plasma and confining the plasma, eliminating intermediate steps. The EMP Fusion device is simpler compared to other fusion devices and this reduces capital and operating costs. Fuel used in the scheme is Lithium Deuteride, the fusion fuel with the least neutron production, and thus chances of radioactive pollution are significantly minimized as well. Numerical calculations have been performed to demonstrate the role of the Lorentz force in confining the superheated plasma, keeping plasma density at the levels needed for Lawson’s criterion, and allowing ignition to be achieved. Key Words: Fusion, Electromagnetic Pulse, Lithium Deuteride, Lawson’s Criterion, Inertial Confinement Fusion, Clean Energy.
Keywords:

-,

___

  • Younger, S., Lindemuth, I., Reinovsky, R., Fowler, C.M., Goforth, J., Ekdahl, C., “Scientific collaborations between Los Alamos and Arzamas- 16 using explosive-driven flux compression generators”, Los Alamos Science, 24 (1996).
  • Lindemuth, I.R., (Eds.) “Proceedings from the 1st International Symposium for Evaluation of Current Trends in Fusion Research: Magnetized Target Fusion – An Ultra High Energy Approach in an Unexplored Parameter Space”, Washington, DC. (1994).
  • Wessling, F.C., Moser, M.D., Blackwood, J.M., “Subtle issues in the measurement of the thermal conductivity of vacuum insulation panels”, Journal of Heat Transfer, 126: 155-160 (2004).
  • Shilkin, N., Dudin, S., Gryaznov, V., Mintsev, V., Fortov, V., “Measurements of the electron concentration and conductivity of a partially ionized inert gas plasma”, Journal of Experimental and Theoretical Physics, 97(5): 922-931 (10) (2003).
  • Mitchner, M., Kruger, C.H., “Partially Ionized Gases”, John Wiley & Sons Inc., San Francisco (1973).
  • Boyd, R.W., Dodd, J.G., Krasinskit, J., Stroud, C.R., “Disk-shaped heat-pipe oven used for lithium excited-state lifetime measurements”, Optics Letters, 5(3): 117-119 (1980).
  • Muggli, P., Hoffman, J.R., Marsh, K.A., Wang, S., Clayton, C.E., Katsouleas, T.C., Joshi, C., “Lithium Plasma Sources for Acceleration and Focusing of Ultra-relativistic Electron Beam”, Proceedings from the ‘99 Particle Accelerator Conference: New York, NY (1999).
  • Gatilov, L.A., Ibragimov, R.A., Kudashov, A.V., “Structure of a detonation wave in cast TNT”, Combustion, Explosion and Shock Waves, 25 (2): 206-208 (1989).
  • Albares, F.J., Krall, N.A., Oxley, C.L., “Rayleigh Taylor instability in a stabilized linear pinch tube”, Physics of Fluids, 4: 1031-1036 (1961).
  • Ney, P., Rahman, H.U., Wessel, F.J., Rostoker, N., “Staged Z Pinch”, Physical Review Letters, 74: 714-717 (1997).
  • Bott, S.C., Haas, D.M., Eshaq, Y., Ueda, U., Lebedev, S.V., Chittenden, J.P., Palmer, J.B.A., Bland, S.N., Hall, G.N., Ampleford, D.J., Beg, F.N., “Quantitative measurements of wire ablation in tungsten X-pinches at 80 kA”, IEEE Transactions on Plasma Science, 36 (3): 2759- 2764 (2008).
  • Yamanaka, C., “Inertial confinement fusion: The quest for ignition and energy gain using indirect drive”, Nuclear Fusion, 39: 825-827 (1999).
  • Ahlborn, B., Key, M.H., Bell, A.R., “An analytic model for laser-driven ablative implosion of spherical shell targets”, Physics of Fluids, 25: 541 (1982).
  • Pfalzner, S., Cowley, S., “An Introduction to Inertial Confinement Fusion”, Oxfordshire: Taylor and Francis (2006).
  • Niederhaus, J., Ranjan, D., Oakley, J., Anderson, M., hydrodynamic instabilities in a spherical gas bubble accelerated by a planar shock wave”, Fusion Science and Technology, 47(4): 1160 (2005).
  • “Inertial-fusion-related
  • Bültmann, S., Crabb, D.G., Day, D.B., Fatemi, R.D., Gardner, B., Harris, C.M., Johnson, J.R., McCarthy, J.S., McKee, P.M., Meyer, W., Penttilä, S.I., Ponikvar, E., Rijllart, A., Rondon, O.A., Lorant, S.S., Tobias, W.A., Trentalange, S., Zhu, H., Zihlmann, B., Zimmermann, D., “A study of lithium deuteride as a material for a polarized target”, Nuclear Instruments and Methods in Physics Research Section A, 425: 1-2, 23-36 (1999).
  • Borisov, N.S., Fedorov, A.N., Lazarev, A.B., Matafonov, V.N., Neganov, A.B., Plis, Y.A., Shilov, S.N., Usov, Y.A., Bazhanov, N.A., Kovalev, A.I., Gurevich, G.M., Dzyubak, A.P., Karnaukhov, I.M., Lukhanin, A.A., Černy, J., Wilhelm, I., Janout, Z., Šimane, C., Vognar, M., Ball, J., Durand, G., Lehar, F., Sans, J.L., “Frozen spin solid targets developed at the Laboratory of Nuclear Problems”, Czechoslovak Journal of Physics Supplement, 50(1): 401-408 (1999).
  • Veleckis, E., “Thermodynamics of the lithium- lithium deuteride system”, Journal of Physical Chemistry, 81(6): 526-531 (1977).
  • Rosenbluth, M.N., “New ideas in Tokamak confinement”, Maryland: AIP Press (1994).
  • Sarkar, P., Braidwood, S.W., Smith, I.R., Novac, B.M., Miller, R.A., Craven, R.M., “A Compact Battery-Powered System for EMP Generation”, Plasma Science, 34 (5): 1832-1837(2006). Transformer