Application of 1,6-hexanedithiol and 1-hexanethiol self-assembled monolayers on polycrystalline gold electrode for determination of Fe(II) using square wave voltammetry

Monolayer films modified polycrystalline gold electrode has been fabricated by using self assembled monolayer method of 1,6-hexanedithiol and 1-hexanethiol and used for electro-catalytic oxidations of iron(II). A calibration curve was obtained for Fe(II) in a wide concentration range from 5.00×10-8 mol.L−1  to 3.85×10-5 mol.L−1 and detection limit of 1.6×10-8 mol.L−1 on the Au-HDT electrode. Additionally, on the Au-HT electrode, the linear range from 1.00×10−8 mol.L−1 to 2.56×10−5 mol.L−1 and detection limit of 3.20×10−8 mol.L−1 for the determination of Fe(II) were achieved. Validity of the method and applicability of the electrodes are successfully tested by determination of Fe(II) in real samples.

___

  • [1] Liu, X.W. and Millero, F.J., "The solubility of iron in seawater", Mar. Chem., 77: 43-54, (2002). [2] Lieu, P.T., Heiskala, M., Peterson, P.A., Yang, Y., "The roles of iron in health and disease", Mol. Aspects Med., 22: 1-87, (2001). [3] Kassem, M.A. and Amin, A.S., "Spectrophotometric determination of iron in environmental and food samples using solid phase extraction", Food Chem., 141: 1941–1946, (2013). [4] Shaw-Stiffel, T.A., Chronic hepatitis 5nd ed., in: G.L. Mandell, J.E. Bennett, R. Dolin, et al., Principles and practice of infectious diseases, New York: Churchill Livingstone (2000). [5] WHO 2003 & European Community, Iron in Drinking-water, http://www.who.int/water_sanitation_health/dwq/chemicals/iron.pdf, 1998 (accessed 11.03.2017) [6] Bowie, A.R., Achterberg, E.P., Mantoura, R.F.C., Worsfold, P.J., "Determination of sub-nanomolar levels of iron in seawater using flow injection with chemiluminescence detection", Anal. Chim. Acta, 361: 189-200, (1998). [7]. De Jong, J.T.M, Boye, M., Schoemann, V.F., Nolting, R.F., De Baar, H.J.W., "Shipboard techniques based on flow injection analysis for measuring dissolved Fe, Mn and Al in seawater", J. Environ. Monit., 2: 496-502, (2000). [8] Weeks, D.A. and Bruland, K.W., "Improved method for shipboard determination of iron in seawater by flow injection analysis", Anal. Chim. Acta, 453: 21-32, (2002). [9] Johnson, K.S., Coale, K.H., and Jannasch, H.W., "Analytical chemistry in oceanography", Anal. Chem., 64: 1065-1075, (1992). [10] Rijkenberg, M.J.A., Fischer, A.C., Kroon, J.J., Gerringa, L.J.A., Timmermans, K.R., Wolterbeek, H.T., De Baar, H.J.W., "The influence of UV irradiation on the photoreduction of iron in the Southern Ocean", Mar. Chem., 93: 119-129, (2005). [11] Measures, C.I., Yuan, J. and Resing, J., "Determination of iron in seawater by flow injection analysis using in-line preconcentration and spectrophotometric detection", Mar. Chem., 50: 3-12, (1995). [12] Blain, S. and Treguer, P., "Iron(II) and iron(III) determination in seawater at the nanomolar level with selective online preconcentration and spectrophotometric determination", Anal. Chim. Acta, 308: 425-432, (1995). [13] Cha, K.W. and Park, K.W., "Determination of iron(III) with salicylic acid by the fluorescence quenching method", Talanta, 46: 1567-1571, (1998). [14] Pozdniakova, S. and Padarauskas, A., "Speciation of metals in different oxidation states by capillary electrophoresis using pre-capillary complexation with complexones", Analyst, 123: 1497-1500, (1998). [15] Waite, T.D. and Morel, F.M., "Preparation and Properties of a New Carbon Paste Iron Selective Electrodes and Their Applications", Anal. Chem., 56: 787-792, (1984). [16] Mahmoud, W.H., "Iron ion‐selective electrodes for direct potentiometry and potentiotitrimetry in pharmaceuticals", Anal. Chim. Acta, 436: 199-206, (2001). [17] Saleh, M.B., "Iron(III) ionophores based on formyl salicylic acid derivatives as sensors for ion-selective electrodes", Analyst, 125: 179-183, (2000). [18] Bersier, P.M., Howell, J., Bruntlett, C., "Advanced electroanalytical techniques versus atomic absorption spectrometry, inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry in environmental analysis", Analyst, 119: 219-232, (1994). [19] Van den Berg, C.M.G. and Huang, Z.Q., "Determination of iron in seawater using cathodic stripping voltammetry preceded by adsorptive collection with the hanging mercury drop electrode", J. Electroanal. Chem., 177: 269-280, (1984). [20] Ugo, P., Moretto, L.M., Rudello, D., Birriel, E., Chevalet, J., "Trace iron determination by cyclic and multiple square‐wave voltammetry at nafion coated electrodes. Application to Pore‐Water Analysis", Electroanalysis, 13: 661-668, (2001). [21] Obata, H. and van den Berg, C.M.G., "Determination of picomolar levels of iron in seawater using catalytic cathodic stripping voltammetry", Anal. Chem., 73: 2522–2528, (2001). [22] Van den Berg, C.M.G., "Chemical speciation of iron in seawater by cathodic stripping voltammetry with dihydroxynaphthalene", Anal. Chem., 78: 156–163, (2006). [23] Murray, R.W., in: Bard, A.J. (Eds.), In Electroanalytical Chemistry, Marcel Dekker, New York, (1984). [24] Jens, K., Terborg, L., Nowak, S., Telgmann, L., Tokmak, F., Kramer, B.K., Gunsel, A., Wiesmuller, G.A., Waldeck, J., Bremer, C., Karst, U., "Analysis of the Contrast Agent Magnevist® and its Transmetallation Products in Blood Plasma by CE/ESI-TOF-MS", Analytical Chem., 81: 3600–3607, (2009). [25] Mandler, D., "Formation, Characterization, and Applications of Organic and Inorganic Nanometric Films", Israel Journal of Chem., 50: 306–311, (2010). [26] Shervedani, R.K. and Bagherzadeh, M., "Electrochemical impedance spectroscopy as a transduction method for electrochemical recognition of zirconium on gold electrode modified with hydroxamated self-assembled monolayer", Sensors and Actuators B, 139: 657–664, (2009). [27] Hong, H.G., Park, W. and Yu, E., "Voltammetric determination of electron transfer kinetic parameters in hydroquinone-terminated self-assembled monolayers on gold", J. Electroanal. Chem., 476: 177-181, (1999). [28] Love, J.C., Estroff, L.A., Kriebel, J.K., Nuzzo, R.G., Whitesides, G.M., "Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology", Chem. Rev., 105: 1103–1169, (2005). [29] Chaki, N.K. and Vijayamohanan, K., "Self-assembled monolayers as a tunable platform for biosensor applications", Biosens. Bioel., 17: 1–12, (2002). [30] Ma, H.Y., Yang, C., Yina, B.S., Lia, G.Y., Chen, S.H., Luo, J.L., "Electrochemical characterization of copper surface modified by n-alkanethiols in chloride-containing solutions", Applied Surface Science, 218: 143–153, (2003). [31] Su, L., Gao, F. and Mao, L., "Electrochemical properties of carbon nanotube (CNT) film electrodes prepared by controllable adsorption of CNTs onto an alkanethiol monolayer self-assembled on gold electrodes", Anal. Chem., 78: 2651–2657, (2006). [32] Guo, X., Kulkarni, A., Doepke, A., Halsall, H.B., Iyer, S., Heineman, W.R., "Carbohydrate-based label-free detection of Escherichia coli ORN 178 using elec-trochemical impedance spectroscopy", Anal. Chem., 84: 241–246, (2012). [33] Barreiros dos Santos M.,, Agusil, J.P., Prieto-Simón, B., Sporer, C., Teixeira, V., Samitier, J., "Highly sensitive detection of pathogen Escherichia coli O157:H7 by electrochemical impedance spectroscopy", Biosens. Bioelectron., 45: 174–180, (2013). [34] Geng, P., Zhang, X., Meng, W., Wang, Q., Zhang, W., Jin, L., Feng, Z., Wu, Z., "Self-assembled monolayers-based immunosensor for detection of Escherichia coliusing electrochemical impedance spectroscopy", Electrochim. Acta, 53: 4663–4668, (2008). [35] Brett, C.M.A., Kresak, S., Hianik, T., Brett, A.M.O., "Studies on self-assembled alkanethiol monolayers formed at applied potential on polyerystalline gold electrodes", Electroanalysis, 15: 557-565, (2003). [36] Leniart, A., Brycht, M., Burnat, B., Skrzypek, S., "Voltammetric determination of the herbicide propham on glassycarbon electrode modified with multi-walled carbon nanotubes", Sensors and Actuators B, 231: 54–63, (2016). [37] Lavanya, J. and Gomathi, N., "High-sensitivity ascorbic acid sensor using graphene sheet/graphene nanoribbon hybridmaterial as an enhanced electrochemical sensing platform", Talanta, 144: 655–661, (2015). [38] Lei, W., Si, W.M., Hao, Q.L., Han, Z., Zhang, Y.H., Xia, M.Z., "Nitrogen-doped graphene modified electrode for nimodipine sensing", Sensor. Actuat. B. Chem., 212: 207–213, (2015). [39] Murray, R.W., Electroanalytical Chemistry, Marcel Dekker, New York, (1984). [40] Gosser, D.K., Cyclic Voltammetry, Simulation and Analysis of Reaction Mechanisms, Wiley-VCH, New York, (1993). [41] Ermer, J., Miller J.H.McB., (Eds.), Method Validation in Pharmaceutical Analysis, Wiley-VCH Publication, Weinheim, (2005).