Control and Analysis of MPPT Techniques for Standalone PV System with High Voltage Gain Interleaved Boost Converter

In photovoltaic (PV) power generating systems DC-DC converters acts as an interface between the PV source and the load. This paper deals with the use of a high voltage gain three- phase interleaved DC-DC boost converter (IBC) for the standalone PV system applications. Interleaving technique provides high power capability and reduces the voltage stress on the power semiconductor devices. In PV system maximum power point tracking (MPPT) technique is used to track the maximum power from the PV panel. To extract the maximum power from the PV panel at different irradiation levels radial basis function network (RBFN) based MPPT algorithm is developed. The output power of the high voltage gain three-phase IBC with RBFN based MPPT controller is compared with traditional P&O and fuzzy logic based MPPT controllers at different irradiation levels. The performance analysis of P&O, fuzzy logic and RBFN MPPT algorithms with high voltage gain three-phase IBC is done by using MATLAB/SIMULINK.

___

  • [1] Figueres E, Garcerá G, Sandia J, Gonzalez-Espin F and Rubio JC. “Sensitivity study of the dynamics of three-phase photovoltaic inverters with an LCL grid filter”, IEEE Trans. Ind. Electron., vol. 56, no. 3, pp. 706-717, (2009).
  • [2] Li Q and Wolfs P. “A review of the single phase photovoltaic module integrated converter topologies with three different DC link configurations”, IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1320-1333, (2008).
  • [3] Ram, J.P., Babu, T.S. and Rajasekar, N. “A comprehensive review on solar PV maximum power point tracking techniques”, Renew. & Sustain. Energy Rev., vol. 67, pp. 826-847, (2017).
  • [4] Saravanan, S. and Babu, N.R. “Maximum power point tracking algorithms for photovoltaic system–A review”, Renew. & Sustain. Energy Rev., vol. 57, pp.192-204, (2016).
  • [5] Narendiran, S., Sahoo, S.K. and Das, R. “Control and Analysis of MPPT Techniques for Maximizing Power Extraction and Eliminating Oscillations in PV System”, Inter. Energy Journal, vol. 16, no. 3, (2016).
  • [6] Seshagiri, S. and Khalil, H.K. “Output feedback control of nonlinear systems using RBF neural networks”, IEEE Trans. Neur. Net., vol. 11, no. 1, pp.69-79, (2000).
  • [7] Al-Amoudi, A. and Zhang, L. “Application of radial basis function networks for solar-array modelling and maximum power-point prediction”, IEE Proceedings-Generation, Transmission and Distribution, vol. 147, no. 5, pp.310-316, (2000).
  • [8] Li, W., Lv, X., Deng, Y., Liu, J. and He, X. “A review of non-isolated high step-up DC/DC converters in renewable energy applications”, In Applied Power Electronics Conference and Exposition, pp. 364-369, (2009).
  • [9] Kolli, A., Gaillard, A., De Bernardinis, A., Bethoux, O., Hissel, D. and Khatir, Z. “A review on DC/DC converter architectures for power fuel cell applications”, Energy Convers. and Manag., vol. 105, pp.716-730, (2015).
  • [10] Kumar, K., Babu, N.R. and Prabhu, K.R. “Design and Analysis of an Integrated Cuk-SEPIC Converter with MPPT for Standalone Wind/PV Hybrid System”, Inter. Journ. Renew. Energy Res., vol. 7, no. 1, pp.96-106, (2017).
  • [11] Saravanan, S. and Babu, N.R. “RBFN based MPPT algorithm for PV system with high step up converter”, Energy Convers. and Manag., vol. 122, pp.239-251, (2016).
  • [12] Farooq, A., Malik, Z., Qu, D., Sun, Z. and Chen, G. “A three-phase interleaved floating output boost converter”, Adv. Mater. Sci. and Eng., (2015).
  • [13] Ahmed, J. and Salam, Z. “An improved perturb and observe (P&O) maximum power point tracking (MPPT) algorithm for higher efficiency”, Appl. Energ., vol. 150, pp.97-108, (2015).
  • [14] Bendib, B., Krim, F., Belmili, H., Almi, M.F. and Boulouma, S. “Advanced Fuzzy MPPT Controller for a stand-alone PV system”, Energ. Proced., vol. 50, pp.383-392, (2014).
  • [15] Ali, U.S. “Z-source DC-DC Converter with Fuzzy Logic MPPT Control for Photovoltaic Applications”, Energ. Proced., vol. 90, pp.163-170, (2016).
  • [16] Rai, A.K., Kaushika, N.D., Singh, B. and Agarwal, N. “Simulation model of ANN based maximum power point tracking controller for solar PV system”, Sol. Energ. Mat. and Sol. Cell., vol. 95, no. 2, pp.773-778, (2011).
  • [17] Kumar, K., Babu, N.R. and Prabhu, K.R. “Design and Analysis of RBFN-Based Single MPPT Controller for Hybrid Solar and Wind Energy System”, IEEE Access, vol. 5, pp.15308-15317, (2017).