Estimation of Structural and Optical Parameters of (Mg, B) co-doped ZnO Nanoparticles

Zn0.98-xMg0.02BxO nanoparticles with various dopant ratios (x = 0.00 - 0.05 with increments of 0.01) were grown by using the sol-gel technique. The samples were synthesized and the X-ray diffraction, scanning electron microscopy, optical reflectivity, and electron dispersive analyses were used to obtain the structural, electronic, and optical properties, respectively. Williamson–Hall procedure was utilized to obtain structural properties. The energy bandgap of the particles extracted from the absorption spectra was found to be ranging between 3.23 eV and 3.28 eV and decreasing with the boron concentration. The minimum dislocation density δ and Urbach energy Eu and the maximum bandgap Eg were obtained at 1% B concentration. The refractive index calculated by Moss’s model was found to be 2.3 and the maximum bandgap energy with a value of 3.28 eV suggests that these materials can be useful for infrared applications.

___

  • [1] Hoffmann, S. P., Albert, M., Weber, N., Sievers, D., Förstner, J., Zentgraf, T., et al., “Tailored UV emission by nonlinear IR excitation from ZnO photonic crystal nanocavities”, ACS Photonics, 5(5): 1933–1942, (2018).
  • [2] Khan, I., Saeed, K., Khan, I., “Nanoparticles: Properties, applications, and toxicities”, Arabian J. of Chem., 12 (7): 908-931, (2019).
  • [3] Ronning, C., Gao, P. X., Ding, Y., Wang, Z. L., Schwen, D., “Manganese-doped ZnO nanobelts for spintronics”, Appl. Phys. Lett., 84: 783-785, (2004).
  • [4] Ra, Y. W., Choi, K. S., Kim, J. H., Hahn, Y. B., Im, Y. H., “Fabrication of ZnO nanowires using nanoscale spacer lithography for gas sensors”, Small, 4: 1105-1109, (2008).
  • [5] Choi, Y., Kang, J., Hwang, D., Park, S., “Electron devices, recent advances in ZnO-based light-emitting diodes”, IEEE Trans. Electron Devices, 57: 26, (2010).
  • [6] Tang, Z. K., Wong, G. K. L., Yu, P., Kawasaki, M., Ohtomo, A., Koinuma, H., et al., “Room-temperature ultraviolet laser emission from self-assembled ZnO microparticle thin films”, Appl. Phys. Lett., 72(25): 3270-3272, (1998).
  • [7] Yurish, S. Y., “Advances in Microelectronics: Reviews”, Volume 1, Barcelona: IFSA Publishing, (2018).
  • [8] Vajargah, P., Abdizadeh, H., Ebrahimifard, R., Golobostanfard, M. R., “Sol-gel derived ZnO thin films: effect of amino-additives”, Appl. Surf. Sci., 285: 732-743, (2013).
  • [9] Znaidi, L., “Sol-gel-deposited ZnO thin films: A review”, Mater. Sci. and Eng. B: Solid-State Mater. for Adv. Technol., 174: 18, (2010).
  • [10] Noh, M. F.M., Arzaee, N. A., Safaei, J., Mohamed, N. A., Kim, H. P., Yusoff, A. R. M., et al., “Eliminating oxygen vacancies in SnO2 films via aerosol-assisted chemical vapor deposition for perovskite solar cells and photoelectrochemical cells”, J. Alloys Compd., 773: 997-1008, (2019).
  • [11] Reddy, A. J., Kokila, M. K., Nagabhushan, H., Chakradhar, R. P. S., Shivakumar, C., Rao, J. L., Nagabhushan, B. M., “Structural, optical and EPR studies on ZnO: B nanopowders prepared via low-temperature solution combustion synthesis”, J. Alloys Compd., 509: 5349-5355, (2011).
  • [12] Cˇižek, J., Valenta, J., Hruška, P., Melikhova, O., Procházka, I., Novotný, M., et al., “Origin of green luminescence in hydrothermally grown ZnO single crystals”, Appl. Phys. Lett., 106: 251902, (2015).
  • [13] Stanić, V., “Biomedical, therapeutic and clinical applications of bioactive glasses: Boron-containing bioactive glasses for bone regeneration”, In: Kaur, G., Ed.; Woodhead Publishing: Cambridge, UK, 219-249, (2019).
  • [14] Duru, I. P., Ozugurlu, E., Arda, L., “Size effect on magnetic properties of Zn0.95−xMgxNi0.05O nanoparticles by Monte Carlo simulation”, Ceram. Int., 45: 5259-5265, (2019).
  • [15] Senol, S. D., Boyraz, C., Ozugurlu, E., Gungor, A., Arda, L., “Bandgap Engineering of Mg Doped ZnO Nanorods Prepared by a Hydrothermal Method”, Cryst. Res. and Technol., 54 (3): 1800233, (2019).
  • [16] Akcan, D., Ozharar, S., Ozugurlu, E., Arda, L., “The effects of Co/Cu Co-doped ZnO thin films: An optical study”, J. Alloys Compd., 797: 253-261, (2019).
  • [17] Ozgur, U., Alivov, Y. I., Liu, C., Teke, A., Reshchikov, M. A., Dogan, S., et al., “A comprehensive review of ZnO materials and devices”, J. Appl. Phys., 98: 041301, (2005).
  • [18] Kim, S., Park, H., Nam, G., Yoon, H., Kim, J. Su, Kim, J. S., et al., “Temperature-dependent Photoluminescence of Boron-doped ZnO Nanorods”, Bull. Korean Chem. Soc., 34 (11): 3335, (2013).
  • [19] Tsayn, C. Y., Hsu, W. T., “Sol-gel derived undoped and boron-doped ZnO semiconductor thin films: preparation and characterization”, Ceram. Int., 39: 7425-7432, (2013).
  • [20] Senol, S. D., Terzioglu, R., Ozturk, O., “The influence of boron doping on the structural and mechanical characterization of ZnO”, J. Alloys Compd., 797: 717-726, (2019).
  • [21] Parra, M. R, Pandey, P., Siddiqui, H., Qadri, S. B., Haque, F. Z., “New-insight into the physical properties of Zn1-xBxO two dimensional hexagonal nanodisks: an efficient material for dye-sensitized solar cells”, Mater. Lett., 238: 194-197, (2019).
  • [22] Kilinc, N., Arda, L., Ozturk, S., Ozturk, Z. Z., “Structure and electrical properties of Mg‐doped ZnO nanoparticles”, Cryst. Res. Technol., 45(5): 529-538, (2010).
  • [23] Arda, L., Acikgoz, M., Heiba, Z. K., Dogan, N., Akcan, D., Cakiroglu, O., “Synthesis, characterization and ESR studies of powder Zn0.95−xMg0.05AlxO (x=0.0, 0.01, 0.02, 0.05, and 0.1) nanocrystals”, Solid State Commun., 170: 14-18, (2013).
  • [24] Park, W. I., Yi, G. C., Jang, H. M., “Metalorganic vapor-phase epitaxial growth and photoluminescent properties Zn1-xMgxO (0
  • [25] Abed, C., Bouzidi, C., Elhouichet, H., Gelloz, B., Ferid, M., “Mg doping induced high structural quality of sol-gel ZnO nanocrystals: application in photocatalysis”, Appl. Surf. Sci., 349: 855-863, (2015).
  • [26] Guler, A., Arda, L., Dogan, N., Boyraz, C., Ozugurlu, E., “The annealing effect on microstructure and ESR properties of (Cu/Ni) co-doped ZnO nanoparticles”, Ceram. Int., 45(2): 1737-1745, (2019).
  • [27] Stokes, A. R., Wilson, A. J. C., “The diffraction of x rays by distorted crystal aggregates – I.”, Proc. of the Physical Soc., 56 (3): 174-181, (1944).
  • [28] Mote, V. D. D., Dargad, J. S. S., Purushotham, Y., Dole, B. N. N., “Effect of doping on structural, physical, morphological, and optical properties of Zn1−xMnxO nano-particles”, Ceram. Int., 41: 15153-15161, (2015).
  • [29] Mallika, A. N., Reddy, A. R., Babu, K. S., Sujatha, C., Reddy, K. V., “Structural and photoluminescence properties of Mg substituted ZnO nanoparticles”, Opt. Mater., 36: 879-884, (2014).
  • [30] Pawar, B. N., Jadkar, S. R., Takwale, M. G., “Deposition and characterization of transparent and conductive sprayed ZnO: B thin films”, J. Phys. Chem. Solids, 66: 1779, (2005).
  • [31] Kerli, S., Alver, U., Tanriverdi, A., Avar, B., “Structural and physical properties of boron-doped ZnO films prepared by chemical spray pyrolysis method”, Crystallogr. Rep., 60: 946-950, (2015).
  • [32] Bhattacharjee, S., Sarkar, P. K., Roy, A., “Polyvinyl-alcohol based devices with highly conductive, optically active boron-doped ZnO nanoparticles for efficient resistive-switching at ultralow operating voltage”, Superlattices Microstruct., 100: 1057–1063, (2016).
  • [33] Hurma, T., “Effect of boron doping concentration on structural optical-electrical properties of nanostructured ZnO films”, J. Mol. Struct., 1189: 1-7, (2019).
  • [34] Moss, T. S., “Relations between the refractive index and energy gap of semiconductors”, Phys. Status Solidi B., 131: 415, (1985).
  • [35] Hervé, P., Vandamme, L., “General relation between refractive index and energy gap in semiconductors”, Infrared Phys. Technol., 35: 609, (1994).
  • [36] Kumar, V., Singh, J., “Model for calculating the refractive index of different materials”, Indian J. Pure Appl. Phys., 48: 571, (2010).
  • [37] Zamiri, R., Singh, B., Bdikin, I., Rebelo, A., Belsley, M. S., Ferreira, J., “Influence of Mg doping on dielectric and optical properties of ZnO nano-plates prepared by wet chemical method. Solid State Commun., 195: 74-79, (2014).
  • [38] Tripathy, S., “Refractive Indices of Semiconductors from Energy gaps”, Opt. Mater., 46: 240-246, (2015).
  • [39] Kim, S. H., Nam, G., Yoon, H., Kim, Y., Kim, Y., Kim, B., et al., “Optical Parameters of Boron-Doped ZnO Nanorods Grown by Low-Temperature Hydrothermal Reaction”, J. Nanosci. Nanotechnol., 14(11): 8512–8517, (2017).
  • [40] Naccarato, F., Ricci, F., Suntivich, J., Hautier, G., Wirtz, L., Rignanese, G. M., “Searching for materials with high refractive index and wide bandgap: A first-principles high-throughput study. Phys Rev Mater., 3: 044602, (2019).
  • [41] Senol, S. D., Ozugurlu, E., Arda, L., “The effect of cobalt and boron on the structural, microstructural, and optoelectronic properties of ZnO nanoparticles”, Ceram. Inter., 46 (6): 7033-7044, (2020).
  • [42] Caglar, M., Ilican, S., Caglar, Y., “Influence of Dopant Concentration on the Optical Properties of ZnO: In Films by Sol-Gel Method”, Thin Solid Films, 517: 5023-5028, (2009).
  • [43] Vettumperumal, R., Kalyanaraman, S., Santoshkumar, B., Thangavel, R., “Estimation of electron-phonon coupling and Urbach energy in group-I elements doped ZnO nanoparticles and thin films by sol-gel method”, Materials Res. Bull., 77: 101-110, (2016).
  • [44] LeVeque, R.J. “Finite difference methods for ordinary and partial differential equations: steady-state and time-dependent problems”. Philadelphia, PA: Society for Industrial and Applied Mathematics, (2007).
  • [45] Ozugurlu, E., “A note on the numerical approach for the reaction-diffusion problem with a free boundary condition”, ANZIAM, 51 (3): 317–330, (2010).
  • [46] Ozugurlu, E., “A note on the numerical approach for the reaction-diffusion problem to model the density of the tumor growth dynamics”, Comput. Math. with Appl., 69 (12): 1504-1517, (2015).
  • [47] Bindu, P., Thomas, S., “Optical properties of ZnO nanoparticles synthesized from a polysaccharide and ZnCl2”, Acta Phys. Pol A, 131: 1474–1478, (2017).
  • [48] Dimova-Malinovska, D., Angelov, O., Nichev, H., Kamenova, M., Pivin, J. C., “ZnO: H thin films for room temperature selective NH3 sensors”, J. Optoelectron. Adv. Mater., 9: 248, (2007).
  • [49] Dimova-Malinovska, D., Nichev, H., Angelov, O., Grigorov, V., Kamenova, M., “Electrical and optical properties of ZnO thin films prepared by magnetron rf sputtering-influence of Al, Er, and H”, Superlattices and Microstruct., 42: 123-128, (2007).
  • [50] Dimova-Malinovska, D., Angelov, O., Nichev, H., Pivin, J. C., “Correlation between the stress in ZnO thin films and the Urbach band tail width”, J. Optoelectron. Adv. Mater., 1: 248, (2008).