Zeytinyağı endüstrisi atıksuyunu arıtan mikrofiltrasyon membran sisteminde organik madde gideriminin kinetik değerlendirilmesi

Bu çalışmada, laboratuvar ölçekli bir mikrofiltrasyon membran sistemi, 100, 150 ve 200 L/sa debilerde, 1 bar basınçta ve 30, 60, 90 ve 120 dakikalık 4 farklı filtrasyon süresinde (MFS) çalıştırılmıştır. Sistem, 120 g/L kimyasal oksijen ihtiyacı (KOİ) konsantrasyonuna sahip zeytinyağı endüstrisi atıksuyu ile beslenmiştir. Mikrofiltrasyon sonrası elde edilen sonuçlar, Modifiye Stover-Kincannon modeli, İkinci Derece Kinetik model, Birinci Derece Kinetik model kullanılarak analiz edilmiş ve uygulanan modellerin deneysel verilere uygun olduğu bulunmuştur. Modifiye Stover-Kincannon model sabitleri olan Umaks ve KB sırasıyla 39,370- 46,948 g/L.dak ve 80,114-96,883 g/L.dak aralığındadır. İkinci Derece Kinetik model sabitleri olan b ve a değerleri sırasıyla 2,0349-2,0807 ve 2,5546-3,0527 1/dak ve ikinci derece KOİ giderme hız sabiti olan k2(C) değerleri ise, 39,3095-46,9741 1/dak aralığında bulunmuştur. Birinci Derece Kinetik modelinde, birinci derece KOİ giderme hız sabiti, k1, 0,8868-0,5286 1/dak aralığındadır. Yüksek korelasyon katsayıları (R2 = %100–97), uygulanan bu modellerin, mikrofiltrasyon sistem tasarımında organik madde giderme kinetiğinde kullanılabileceğini, dolayısıyla zeytinyağı endüstrisi atıksuyunun arıtımında membranın davranışını tahmin edebileceğini göstermektedir.

___

  • Wang, C., Wang, Y., Qin, H., Lin, H., Chhuon, H., Application of microfiltration membrane technology in water treatment, IOP Conf. Series: Earth and Environmental Science, 571: 012158, 2020.
  • Baker, R. W., Membrane Technology and Applications, John Wiley & Sons, New York, A.B.D., 2004.
  • Díaz-Montes, E., Castro-Muñoz, R., Metabolites recovery from fermentation broths via pressure-driven membrane processes, Asia-Pacific J. Chem. Eng., 10.1002/apj.2332, 2019.
  • Lecce, G. D., Cassano, A., Bendini, A., Conidi, C., Giorno, L., Toschi, T. G., Characterization of olive mill wastewater fractions treatment by integrated membrane process, Journal of the Science of Food and Agriculture, 94: 2935–2942, 2014.
  • Pulido M. O., Ferez A. M., On the recent use of membrane technology for olive mill wastewater purification, Membranes, 5(4), 513-531, 2015.
  • Akdemir E.O., Aygan E., Pretreatment of olive mill wastewater by ultrafiltration process using chitosan, Desalination and Water Treatment, 142: 49-55, 2019.
  • Hamedi, H., Mohammadzadeh, O., Rasouli, S., Zendehboudi, S., A critical review of biomass kinetics and membrane filtration models for membrane bioreactor systems, Journal of Environmental Chemical Engineering, 106406, 2021.
  • Naessens, W., Maere, T., Nopens, I., Critical review of membrane bioreactor models – Part 1: Biokinetic and filtration models, Bioresource Technology, 122, 95-106, 2012.
  • Long, Y., Yu, G., Dong, L., Xu, Y., Lin, H., Deng, Y., You, X., Yang, L., Liao, B.-Q., Synergistic fouling behaviors and mechanisms of calcium ions and polyaluminum chloride associated with alginate solution in coagulation-ultrafiltration (UF) process, Water Research, 189, 116665, 2021.
  • You, X., Zhang, J., Shen, L., Li, R., Xu, Y., Zhang, M., Hong, H.,Yang, L., Ma, Y., Lin, H., Thermodynamic mechanisms of membrane fouling during filtration of alginate solution in coagulationultrafiltration (UF) process in presence of different ionic strength and iron(III) ion concentration, Journal of Membrane Science, 635, 119532, 2021.
  • Wu, M., Chen, Y., Lin, H., Zhao, L., Shen, L., Li, R., Xu, Y., Hong, H., He, Y., Membrane fouling caused by biological foams in a submerged membrane bioreactor: Mechanism insights, Water Research, 181, 115932, 2020.
  • Teng, J., Zhang, M., Leung, K. T., Chen, J., Hong, H., Lin, H., Liao, B. Q., A unified thermodynamic mechanism underlying fouling behaviors of soluble microbial products (SMPs) in a membrane bioreactor, Water Research, 149, 477-487, 2019.
  • Huang, Z., Liu, J., Liu, Y., Xu, Y., Li, R., Hong, H., Shen, L., Lin, H., Liao, B.-Q., Enhanced permeability and antifouling performance of polyether sulfone (PES) membrane via elevating magnetic Ni@MXene nanoparticles to upper layer in phase inversion process, Journal of Membrane Science, 623, 119080, 2021.
  • Janus, T., In Modelling and Simulation of Membrane Bioreactors for Wastewater Treatment, (Doktora tezi), De Montfort University, Leicester, United Kingdom, 2013.
  • Sablani, S., Goosen, M., Al-Belushi, R., Wilf, M., Concentration Polarization in Ultrafiltration and Reverse Osmosis: A Critical Review. Desalination, 141, 269-289, 2001.
  • Panigrahi, C., Karmakar, S., Mondal, M., Mishra, H. N., De, S., Modeling of permeate flux decline and permeation of sucrose during microfiltration of sugarcane juice using a hollow-fiber membrane modüle, Innovative Food Science & Emerging Technologies, 49, 92-105, 2018.
  • Wang, Z., Gao, Z., A new flux prediction model for laminar and turbulent flow regimes in constant pressure cross-flow microfiltration, Journal of Environmental Chemical Engineering, 9 (5), 106156, 2021.
  • Zhang, B., Tang, H., Shen, Y., Zhang, B., Liu, G., Shi, W., Comparative analysis of membrane fouling mechanisms induced by colloidal polymer: Effects of sodium and calcium ions, Journal of Colloid and Interface Science, 608, 780–791, 2022.
  • Garcia-Castello, E., Cassano, A., Criscuoli, A., Conidi, C., Drioli, E., Recovery and concentration of polyphenols from olive mill wastewaters by integrated membrane system, Water Research, 44(13), 3883-3892, 2010.
  • Akdemir, E.O., Özer, A., Investigation of two ultrafiltration membranes for treatment of olive oil mill wastewater, Desalination, 249(2), 660-666, 2009.
  • Sánchez-Arévalo, C.M., Jimeno-Jiménez, Á., Carbonell-Alcaina, C., Vincent-Vela, M.C., Álvarez-Blanco, S., Effect of the operating conditions on a nanofiltration process to separate low-molecular-weight phenolic compounds from the sugars present in olive mill wastewaters, Process. Saf. Environ. Prot., 148, 428-436, 2021.
  • Cifuentes-Cabezasa, M., Carbonell-Alcaina, C., Vincent-Vela, M. C., Mendoza-Roca, J. A., Álvarez-Blanco, S., Comparison of different ultrafiltration membranes as first step for the recovery of phenolic compounds from olive-oil washing wastewater, Process Safety and Environmental Protection, 149, 724-734, 2021.
  • Turano, E., Curcio, S., De Paola, M. G., Calabrò, V., Iorio, G., An integrated centrifugation–ultrafiltration system in the treatment of olive mill wastewater, Journal of Membrane Science, 209 519–531, 2002.
  • Bazzarelli, F., Piacentini, E., Poerio, T., Mazzei, R., Cassano, A., Giorno L., Advances in membrane operations for water purification and biophenols recovery/valorization from OMWWs, Journal of Membrane Science, 497(1), 402-409, 2016.
  • Malvis, A., Hodaifa, G., Halioui, M., Seyedsalehi, M., Sánchez, S., Integrated process for olive oil mill wastewater treatment and its revalorization through the generation of high added value algal biomass, Water Research, 151(15), 332-342, 2019.
  • Hodaifa, G., Malvis, A., Maaitah, M., Sánchez, S., Combination of physicochemical operations and algal culture as a new bioprocess for olive mill wastewater treatment, Biomass and Bioenergy, 138, 105603, 1-10, 2020.
  • Baird, R.B., Eaton, A.D., Standard Methods for the Examination of Water and Wastewater, American Public Health Association, A.B.D., 2017.
  • Stover, E. L., Kincannon, D. F., Rotating biological contactor scale-up and design, 1st International Conference on Fixed Film Biological Processes, Kings Island, Ohio, 1982.
  • Nor Faekah I., Fatihah, S., Mohamed, Z.S., Kinetic evaluation of a partially packed upflow anaerobic fixed film reactor treating low-strength synthetic rubber wastewater, Heliyon, 2020 Mar 31;6(3):e03594, 2020.
  • Grau, P., Dohányos, M., Chudoba, J. Kinetics of multicomponent substrate removal by activated sludge, Water Research, 9(7), 637-642, 1975.
  • Kordkandi, S., Khoshfetrat, B. A., Faramarzi, A., Performance modelling of a partially-aerated submerged fixed-film bioreactor: Mechanistic analysis versus semi data-driven method, Journal of Industrial and Engineering Chemistry, 61,398-406, 2017.
  • Sumantri, I., Budiyono, B., Purwanto, P., Kinetic study of anaerobic digestion of ketchup industry wastewater in a three-stages anaerobic baffled reactor (ABR), Bulletin of Chemical Reaction Engineering & Catalysis, 14(2), 326-335, 2019.
  • Benitez, F.J., Acero, J.L., Leal, A.I., Application of microfiltration and ultrafiltration processes o cork processing wastewaters and assessment of the membrane fouling, Sep. Purif. Technol., 50: 354–364, 2006.
  • Petrotos, K. B., Lellis, T., Kokkora, M.I., Gkoutsidis, P. E., Purification of olive mill wastewater using microfiltration membrane technology, Journal of Membrane and Separation Technology, 3, 50-55, 2014.
  • Zirehpour, A., Jahanshahi, M., Rahimpour, A., Unique membrane process integration for olive oil mill wastewater purification, Separation and Purification Technology, 96, 124–131, 2012.
  • Şentürk, E., Ince, M., Engin, G.O., Kinetic evaluation and performance of a mesophilic anaerobic contanct reactor treating medium-strength food processing wastewater, Bioresource Technology, 101(11): 3970-3977, 2010.
  • Ahn, J.H., Foster, C.F., Kinetic analyses of the operation of mesophilic and thermophilic anaerobic filters treating a simulated starch wastewater, Process Biochem., 36, 19–23, 2000.
  • Rajagopal, R., Torrijos, M., Kumar, P., Mehrotra, I., Substrate removal kinetics in high-rate upflow anaerobic filters packed with low-density polyethylene media treating high-strength agro-food wastewaters, Journal of Environmental Management, 116(15), 101-106, 2013.
  • Ebrahimi, M., Kazemi, H., Mirbagheri, S. A., Rockaway, T. D., Integrated approach to treatment of high-strength organic wastewater by using anaerobic rotating biological contactor, J. Environ. Eng., 144(2): 04017102(1-10), 2018.
  • Jijia, S., Siripatanab, C., O-Thongc, S., Ismaild, N., Kinetic models for prediction of COD effluent from upflow anaerobic sludge blanket (UASB) reactor for cannery seafood wastewater treatment, Jurnal Teknologi, 78:5–6, 93–99, 2016.
  • Mekonnen, A., Leta, L., Njau, K.N., Kinetic analysis of anaerobic sequencing batch reactor for the treatment 1of tannery wastewater, African Journal of Environmental Science and Technology, 11(6), 339-348, 2017.
  • Raja Priya, K., Sandhya, S., Swaminathan, K., Kinetic analysis of treatment of formaldehyde containing wastewater in UAFB reactor, Chem. Eng. J. 148, 212–216, 2009.
  • Amin, M. M., Khiadani, M. H., Fatehizadeh, A., Taheri, E., Validation of linear and non-linear kineticmodeling of saline wastewater treatment by sequencing batch reactor with adapted and non-adapted consortiums, Desalination, 344, 228–235, 2014.
Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi-Cover
  • ISSN: 1300-1884
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1986
  • Yayıncı: Oğuzhan YILMAZ