Üretimin su ayak izinin incelenmesi: Diyarbakır ili için bir vaka çalışması

Hızlı kentleşme, kişi başına düşen su tüketiminin artması ve gelişen endüstriye paralel olarak su kirliliğinin artması, bölgesel su kaynakları üzerinde daha etkili ölçüm, yönetim ve karar mekanizmalarının işleme alınmasını gerekli kılmıştır. Su ayak izi (SA) kavramı, özellikle su kaynakları yönetimine destek sağlamak için ekolojik ve karbon ayak izlerine benzer şekilde son yıllarda literatüre kazandırılan yeni bir parametredir. Herhangi bir alan veya ürünün su ayak izi, üretim süreci boyunca doğrudan veya dolaylı olarak işleme alınan veya kirletilen su kaynaklarının toplam hacmini ifade eder. Bu çalışmanın temel amacı, 2008-2019 yılları arasında Diyarbakır ilinde tarım, hayvancılık, endüstriyel üretim ve evsel kullanımından kaynaklanan mavi ve yeşil su ayak izlerinin detaylı olarak analiz edilmesidir. Buna göre, bölgenin ortalama SA değeri 3,43 milyar m3/yıl olarak hesaplamıştır. İl genelindeki su kaynaklarının büyük çoğunluğunun % 86’lık bir oranla tarımsal ürünlerin yetiştirilmesinde kullanıldığı, mevcut taze suyun % 49’unun yüzey ve yeraltı suyundan tedarik edildiği ve kurak sezonda bu oranın % 62’ye kadar yükseldiği tespit edilmiştir. İlde yetiştirilen tarımsal ürünlerin sanal su muhtevaları ve toplam su kullanımları ayrıca hesaplanmış ve tartışılmıştır. Mevcut çalışma, ülkemizde yapılan ilk bölgesel SA analizlerinden biri olup, tarımsal planlama, evsel ve endüstriyel su tahsisi, atık yönetimi ve su kaynaklarının sürdürülebilirliği gibi konularda katkıda bulunması beklenmektedir. 

Assessment of water footprint of production: A case study for Diyarbakır province

Rapid urbanization, increasing per capita water consumption and pollution together with the developing industry necessitated to process more effective measurement, management and decision mechanisms on regional water resources. The concept of water footprint (WF) is a new parameter that has been introduced to the literature in recent years similar to the ecological and carbon footprints to support water resource management works. The WF of any field or product refers to the total volume of water resources that is processed or contaminated directly or indirectly during the production process. The main purpose of this study is to analyze blue and green water footprints of agricultural, livestock, industrial production and domestic use in Diyarbakır province for 2008-2019. Accordingly, the average WF value of the study area was calculated to be 3.43 billion m3/year. The majority of the water resources in the province corresponding 86 % of all water resources is used for the cultivation of agricultural products. Also, 49 % of freshwater was supplied from surface and ground water which increases up to 62 % in dry season. The virtual water contents and water utilization of agricultural products were also calculated and discussed. The current study is one of the first regional WF analyzes performed in Turkey and it is expected to contribute to agricultural planning, domestic and industrial water allocation, waste management and sustainability works of water resources.

___

  • 1. Brunner M.I., Björnsen Gurung A., Zappa M., Zekollari H., Farinotti D., Stähli M., Present and future water scarcity in Switzerland: Potential for alleviation through reservoirs and lakes, Science of The Total Environment, 666, 1033–1047, 2019.
  • 2. Şenol R., Agricultural irrigation and solar energy, Journal of the Faculty of Engineering and Architecture of Gazi University, 27 (3), 519–526, 2013.
  • 3. Albostan A., Önöz B., Wavelet application approach on the chaotic analysis of dialy river discharge, Journal of the Faculty of Engineering and Architecture of Gazi University, 30 (1), 39–48, 2015.
  • 4. Ünlü A., Çoban F., Tunç M.S., Investigation o Lake Hazar water quality according to physical and inorganic chemical parameters, Journal of the Faculty of Engineering and Architecture of Gazi University, 23 (1), 119–127, 2013.
  • 5. Dişli M., Akkurt F., Alıcılar A., Evaluation on water quality of Şanlıurfa Balıklıgöl concerning with physical parameters, Journal of the Faculty of Engineering and Architecture of Gazi University, 19 (3), 287–294, 2013.
  • 6. Seçkin N., Topçu E., Regional frequency analysis of annual peak rainfall of adana and the vicinity, Journal of the Faculty of Engineering and Architecture of Gazi University, 31 (4), 1049–1062, 2016.
  • 7. Mahmut F., Yurdusev M.A., Mermer M., Monthly water demand forecasting by adaptive neuro-fuzzy inference system approach, Journal of the Faculty of Engineering and Architecture of Gazi University, 23 (2), 449–457, 2008.
  • 8. Distefano T., Kelly S., Are we in deep water? Water scarcity and its limits to economic growth, Ecological Economics, 142, 130–147, 2017.
  • 9. Tunç Dede Ö., Sezer M., The application of Canadian water quality index (CWQI) model for the assessment of water quality of Aksu creek, Journal of the Faculty of Engineering and Architecture of Gazi University, 32 (3), 909–917, 2017.
  • 10. Gürer İ., Uçar İ., Simulation of the runoff hydrograph by SRM supported by GIS and remote sensing (Kayseri-Sariz creek watershed case study), Journal of the Faculty of Engineering and Architecture of Gazi University, 28 (1), 91–101, 2014.
  • 11. Dönmez S., Akşehir Gölü su seviyesinin çekilmesinin meteorolojik ve uydu verileri ile incelenmesi, Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 33 (1), 177–188, 2018.
  • 12. Şarlak N., Tiğrek Ş., Flood frequency analysis: Case study of Göksu River and Kayraktepe Dam, Journal of the Faculty of Engineering and Architecture of Gazi University, 31 (4), 1095–1103, 2016.
  • 13. Aküzüm T., Çakmak B., Gökalp Z., Türkiye’de Su Kaynakları Yönetiminin Değerlendirilmesi, Tarım Bilimleri Araştırma Dergisi, 3 (1), 67–74, 2010.
  • 14. EU-Groundwater directive, Directive 2006/118/EC of the European parliament and of the council, Official Journal of the European Union, 2006.
  • 15. Lirika K., Alma I., Magdalena C., Dashnor K., Use of diatom and macrophyte index to evaluate the water quality in Ohrid Lake, Journal of the Faculty of Engineering and Architecture of Gazi University, 2 (2), 393–400, 2013.
  • 16. Yaykiran S., Cuceloglu G., Ekdal A., Yaykiran S., Cuceloglu G., Ekdal A., Estimation of Water Budget Components of the Sakarya River Basin by Using the WEAP-PGM Model, Water, 11 (2), 2019.
  • 17. Falkenmark M., The Massive Water Scarcity Now Threatening Africa: Why Isn’t It Being Addressed?, Ambio, 1989.
  • 18. Karadağ A.A., Türkiye’deki Su Kaynakları Yönetimine İlişkin Sorunlar ve Çözüm Önerileri, TMMOB 2 Su Politikaları Kongresi, 2008.
  • 19. Meriç B.T., Su kaynakları yönetimi ve Türkiye, Jeoloji Mühendisliği Dergisi, 28 (1), 27–38, 2004.
  • 20. Veettil A.V., Mishra A.K., Potential influence of climate and anthropogenic variables on water security using blue and green water scarcity, Falkenmark index, and freshwater provision indicator, Journal of Environmental Management, 228, 346–362, 2018.
  • 21. Hoekstra A.Y., Chapagain A.K., Aldaya M.M., Mekonnen M.M., The Water Footprint Assessment Manual, Water Footprint Network, 2011.
  • 22. Chapagain A.K., Hoekstra A.Y., Water footprint of nations. Volume 1 : Main report, Value of Water Research Report Series, 1 (16), 1–80, 2004.
  • 23. Hoekstra A.Y., Chapagain A.K., Water footprints of nations: Water use by people as a function of their consumption pattern, Water Resources Management, 21 (1), 35–48, 2006.
  • 24. Hoekstra A.Y., Hung P.Q., A quantification of virtual water flows between nations in relation to international crop trade, Water Research, 49 (11), 203–209, 2002.
  • 25. Mekonnen M.M., Hoekstra A.Y., A global and high-resolution assessment of the green, blue and grey water footprint of wheat, Hydrology and Earth System Sciences, 14 (7), 1259–1276, 2010.
  • 26. Pegram G., Conyngham S., Aksoy A., Dıvrak B.B., Öztok D., Türkiye’nin su ayak izi raporu: Su, üretim ve uluslararası ticaret ilişkisi, WWF 2014.
  • 27. Vanham D., A holistic water balance of Austria - How does the quantitative proportion of urban water requirements relate to other users?, Water Science and Technology, 66 (3), 549–555, 2012.
  • 28. Mubako S.T., Blue, Green, and Grey Water Quantification Approaches: A Bibliometric and Literature Review, Journal of Contemporary Water Research & Education, 165 (1), 4–19, 2018.
  • 29. Ercin A.E., Hoekstra A.Y., Water footprint scenarios for 2050: A global analysis, Environment International, 64, 71–82, 2014.
  • 30. Citakoglu H., Cobaner M., Haktanir T., Kisi O., Estimation of Monthly Mean Reference Evapotranspiration in Turkey, Water Resources Management, 28 (1), 99–113, 2014.
  • 31. Zhuo L., Hoekstra A.Y., Wu P., Zhao X., Monthly blue water footprint caps in a river basin to achieve sustainable water consumption: The role of reservoirs, Science of The Total Environment, 650, 891–899, 2019.
  • 32. Quinteiro P., Rafael S., Villanueva-Rey P., Ridoutt B., Lopes M., Arroja L., et al., A characterisation model to address the environmental impact of green water flows for water scarcity footprints, Science of The Total Environment, 626, 1210–1218, 2018.
  • 33. Novoa V., Ahumada-Rudolph R., Rojas O., Munizaga J., Sáez K., Arumí J.L., Sustainability assessment of the agricultural water footprint in the Cachapoal River basin, Chile, Ecological Indicators, 98, 19–28, 2019.
  • 34. Hu Y., Huang Y., Tang J., Gao B., Yang M., Meng F., et al., Evaluating agricultural grey water footprint with modeled nitrogen emission data, Resources, Conservation and Recycling, 138, 64–73, 2018.
  • 35. Johnson M.B., Mehrvar M., An assessment of the grey water footprint of winery wastewater in the Niagara Region of Ontario, Canada, Journal of Cleaner Production, 214, 623–632, 2019.
  • 36. Gerbens-Leenes P.W., Hoekstra A.Y., Bosman R., The blue and grey water footprint of construction materials: Steel, cement and glass, Water Resources and Industry, 19, 1–12, 2018.
  • 37. Cazcarro I., Duarte R., Sánchez-Chóliz J., Downscaling the grey water footprints of production and consumption, Journal of Cleaner Production, 132, 171–183, 2016.
  • 38. Ercin A.E., Governance of globalized water resources: The application of water footprint to inform corporate strategy and government policy, PhD Dissertation in University of Twente, 2012.
  • 39. Muratoglu A., Dicle havzasının su ayak izinin hesaplanması, 1 Uluslararası İçme Suyu ve Atık Su Sempozyumu, 2018.
  • 40. Mekonnen M.M., Hoekstra A.Y., National water footprint accounts: The green, blue and grey water footprint of production and consumption, Volume 2: Appendices, Unesco-IHE Institute for Water Education, Delft, Netherlands, 2011.
  • 41. Mekonnen M.M., Hoekstra A.Y., The green, blue and grey water footprint of crops and derived crop products, Hydrology and Earth System Sciences, 15 (5), 1577–1600, 2011.
  • 42. Mekonnen M.M., Hoekstra A.Y., Water footprint benchmarks for crop production: A first global assessment, Ecological Indicators, 46, 214–223, 2014.
  • 43. Zhang Y., Huang K., Yu Y., Hu T., Wei J., Impact of climate change and drought regime on water footprint of crop production: the case of Lake Dianchi Basin, China, Natural Hazards, 79 (1), 549–566, 2015.
  • 44. Zhuo L., Mekonnen M.M., Hoekstra A.Y., Sensitivity and uncertainty in crop water footprint accounting: A case study for the Yellow River basin, Hydrology and Earth System Sciences, 18 (6), 2219–2234, 2014.
  • 45. Dumont A., Salmoral G., Llamas M.R., The water footprint of a river basin with a special focus on groundwater: The case of Guadalquivir basin (Spain), Water Resources and Industry, 1–2, 60–76, 2013.
  • 46. Aldaya M.M., Llamas M.R., Water footprint analysis of the Guadiana river basin, Unesco-IHE, 2008.
  • 47. Hu T., Huang K., Yu Y., Zhang X., Xu Y., Wang X., Measuring Water Footprint on a Lake Basin Scale: A Case Study of Lake Dianchi, China, Clean - Soil, Air, Water, 44 (10), 1296–1305, 2016.
  • 48. Degefu D.M., Weijun H., Zaiyi L., Liang Y., Zhengwei H., Min A., Mapping Monthly Water Scarcity in Global Transboundary Basins at Country-Basin Mesh Based Spatial Resolution, Scientific reports, 8 (1), 2144, 2018.
  • 49. Önen F., Aslan B., Hamidi N., Diyarbakır Kenti içmesuyu ihtiyacının genetik ifadeli programlama ile modellenmesi, DÜMF Mühendislik Dergisi, 9 (2), 859–870, 2018.
  • 50. Chen J., Shi H., Sivakumar B., Peart M.R., Population, water, food, energy and dams, Renewable and Sustainable Energy Reviews, 56, 18–28, 2016.
  • 51. Kinouchi T., Nakajima T., Mendoza J., Fuchs P., Asaoka Y., Water security in high mountain cities of the Andes under a growing population and climate change: A case study of La Paz and El Alto, Bolivia, Water Security, 6, 100025, 2019.
  • 52. Bicheron P., Defourny P., Brockmann C., Schouten L., Vancutsem C., Huc M., et al., Globcover products description and validation report, , Paris, 2008.
  • 53. Hoff H., Döll P., Fader M., Gerten D., Hauser S., Siebert S., Water footprints of cities indicators for sustainable consumption and production, Hydrology and Earth System Sciences, 2014.
  • 54. UNPD, World urbanization prospects 2011-urban and rural population, 2011.
  • 55. Çelik R., Temporal changes in the groundwater level in the Upper Tigris Basin, Turkey, determined by a GIS technique, Journal of African Earth Sciences, 107, 134–143, 2015.
  • 56. Demir E., The contribution of the Southeastern Anatolian Project to the domestic economy and its effect on the settlement areas, Gazi University Journal of Gazi Educational Faculty, 23 (3), 189–205, 2003.
  • 57. Mekonnen M.M., Hoekstra A.Y., The green, blue and grey water footprint of crops and derived products. Volume 2: Appendices, UNESCO-IHE Instituate for water education 2010.
  • 58. Vanham D., Bidoglio G., The water footprint of Milan, Water Science and Technology, 69 (4), 789–795, 2014.
  • 59. Xu M., Li C., Wang X., Cai Y., Yue W., Optimal water utilization and allocation in industrial sectors based on water footprint accounting in Dalian City, China, Journal of Cleaner Production, 176, 1283–1291, 2018.
  • 60. Liao X., Zhao X., Jiang Y., Liu Y., Yi Y., Tillotson M.R., Water footprint of the energy sector in China’s two megalopolises, Ecological Modelling, 391, 9–15, 2019.
  • 61. Feng L., Hayat T., Alsaedi A., Ahmad B., The driving force of water footprint under the rapid urbanization process: a structural decomposition analysis for Zhangye city in China, Journal of Cleaner Production, 163, S322–S328, 2017.
  • 62. Zhang F., Zhan J., Li Z., Jia S., Chen S., Impacts of urban transformation on water footprint and sustainable energy in Shanghai, China, Journal of Cleaner Production, 190, 847–853, 2018.
  • 63. Fang K., Zhang Q., Yu H., Wang Y., Dong L., Shi L., Sustainability of the use of natural capital in a city: Measuring the size and depth of urban ecological and water footprints, Science of The Total Environment, 631–632, 476–484, 2018.
  • 64. Qian Y., Dong H., Geng Y., Zhong S., Tian X., Yu Y., et al., Water footprint characteristic of less developed water-rich regions: Case of Yunnan, China, Water Research, 141, 208–216, 2018.
  • 65. Luo P., Yang Y., Wang H., Gu Y., Xu J., Li Y., Water footprint and scenario analysis in the transformation of Chongming into an international eco-island, Resources, Conservation and Recycling, 132, 376–385, 2018.
  • 66. Zhao X., Tillotson M.R., Liu Y.W., Guo W., Yang A.H., Li Y.F., Index decomposition analysis of urban crop water footprint, Ecological Modelling, 348, 25–32, 2017.
  • 67. Cai B., Liu B., Zhang B., Evolution of Chinese urban household’s water footprint, Journal of Cleaner Production, 208, 1–10, 2019. 68. Pérez A.J., Hurtado-Patiño J., Herrera H.M., Carvajal A.F., Pérez M.L., Gonzalez-Rojas E., et al., Assessing sub-regional water scarcity using the groundwater footprint, Ecological Indicators, 96, 32–39, 2019.
  • 68. Pérez A.J., Hurtado-Patiño J., Herrera H.M., Carvajal A.F., Pérez M.L., Gonzalez-Rojas E., et al., Assessing sub-regional water scarcity using the groundwater footprint, Ecological Indicators, 96, 32–39, 2019.
  • 69. Ding X., Wang S., Chen B., The Blue, Green and Grey Water Consumption for Crop Production in Heilongjiang, Energy Procedia, 158, 3908–3914, 2019.
  • 70. Manzardo A., Loss A., Fialkiewicz W., Rauch W., Scipioni A., Methodological proposal to assess the water footprint accounting of direct water use at an urban level: A case study of the Municipality of Vicenza, Ecological Indicators, 69, 165–175, 2016.
  • 71. Çelik R., Mapping of groundwater potential zones in the Diyarbakır city center using GIS, Arabian Journal of Geosciences, 8 (6), 4279–4286, 2015.
  • 72. Baran M., Eski Diyarbakır Evleri İklim İlişkisi, DÜMF Mühendislik Dergisi, 8 (2), 423–430, 2017.
  • 73. UN-ESCWA and BGR, Chapter 3 Tigris River Basin, Inventory of Shared Water Resources in Western Asia, 2013.
  • 74. Muratoglu A., Assessment of Tigris River Hydropower Potential, Gaziantep 2011.
  • 75. Yalcin E., Tigrek S., The Tigris hydropower system operations: the need for an integrated approach, International Journal of Water Resources Development, 35 (1), 110–125, 2019.
  • 76. Kibaroglu A., Maden T.E., An analysis of the causes of water crisis in the Euphrates-Tigris river basin, Journal of Environmental Studies and Sciences, 4 (4), 347–353, 2014.
  • 77. FAO, CLIMWAT 2.0, Food and Agricultural Organization of the United Nations, 2018.
  • 78. TAGEM, DSI, Turkiye’de Sulanan Bitkilerin Bitki Su Tuketim Rehberi, Turkish General Directorate of Agricultural Research and Policies, Turkish General Directorate of State Hydraulic Works, Ankara, 2017.
  • 79. FAO, Food and Agricultural Organization of the United Nations, 2019.
  • 80. MGM, Meteoroloji Genel Müdürlüğü, 2019.
  • 81. FAO, Crop Water Information, 2018.
  • 82. TSI, Turkish Statistical Institute, , Ankara, Turkey, 2019.
  • 83. Mekonnen M., Hoekstra A., A global assessment of the water footprint of farm animal products, Ecosystems, 15 (3), 401–415, 2012.
  • 84. Mekonnen M.M., Hoekstra A.Y., The green, blue and grey water footprint of farm animals and animal products. Volume 1: Main Report, UNESCO-IHE Institute for Water Education, UNESCO-IHE Institute for Water Education, The Netherlands, 2011.
  • 85. Lovarelli D., Bacenetti J., Fiala M., Water Footprint of crop productions: A review, Science of The Total Environment, 548–549, 236–251, 2016.
  • 86. Novoa V., Ahumada-Rudolph R., Rojas O., Sáez K., de la Barrera F., Arumí J.L., Understanding agricultural water footprint variability to improve water management in Chile, Science of The Total Environment, 670, 188–199, 2019.
  • 87. Ran Y., Lannerstad M., Herrero M., Van Middelaar C.E., De Boer I.J.M., Assessing water resource use in livestock production: A review of methods, Livestock Science, 187, 68–79, 2016.
  • 88. Hoekstra A.Y., The water footprint of industry, Assessing and Measuring Environmental Impact and Sustainability, Butterworth-Heinemann 2015.
  • 89. Postel S.L., Daily G.C., Ehrlich P.R., Human Appropriation of Renewable Fresh Water, Science, 271 (5250), 785–788, 1996.
  • 90. FAO, CropWat 8.0 Model, Food and Agricultural Organization of the United Nations, 2018.
  • 91. USDA-SCS, Chapter:2 Irrigation Water Requirements, Part 623 National Engineering Handbook, 1993.
  • 92. Postel S., Last Oasis: Facing Water Scarcity, American Journal of Alternative Agriculture, 8, 94–96, 1993.
  • 93. Tigrek S., Kibaroglu A., Strategic Role of Water Resources for Turkey, Turkey’s Water Policy, Springer Berlin Heidelberg, Berlin, Heidelberg, p. 27–42, 2011.
  • 94. Bosire C.K., Lannerstad M., de Leeuw J., Krol M.S., Ogutu J.O., Ochungo P.A., et al., Urban consumption of meat and milk and its green and blue water footprints Patterns in the 1980s and 2000s for Nairobi, Kenya, Science of The Total Environment, 579, 786–796, 2017.
  • 95. Ibidhi R., Hoekstra A.Y., Gerbens-Leenes P.W., Chouchane H., Water, land and carbon footprints of sheep and chicken meat produced in Tunisia under different farming systems, Ecological Indicators, 77, 304–313, 2017.
  • 96. Hoekstra A.Y., The hidden water resource use behind meat and dairy, Animal Frontiers, 2 (2), 3–8, 2012.
  • 97. Gönül H., Demirel F., A case study on prefabricated industrial buildings: Diyarbakır first organized industrial area, Journal of the Faculty of Engineering and Architecture of Gazi University, 18 (1), 2013.
  • 98. Dubcovsky J., Dvorak J., Genome Plasticity a Key Factor in the Success of Polyploid Wheat Under Domestication, Science, 316 (5833), 1862–1866, 2007.
  • 99. Mekonnen M.M., Hoekstra A.Y., A global and high-resolution assessment of the green, blue and grey water footprint of wheat, Hydrology and Earth System Sciences, 14 (7), 1259–1276, 2010.
  • 100. Ye Q., Li Y., Zhuo L., Zhang W., Xiong W., Wang C., et al., Optimal allocation of physical water resources integrated with virtual water trade in water scarce regions: A case study for Beijing, China, Water Research, 129, 264–276, 2018.
  • 101. Fu Y., Zhao J., Wang C., Peng W., Wang Q., Zhang C., The virtual Water flow of crops between intraregional and interregional in mainland China, Agricultural Water Management, 208, 204–213, 2018.
  • 102. Chapagain A.K., Hoekstra A.Y., Water footprints of nations Volume 2: Appendices, UNESCO-IHE Instituate for water education 2004.
  • 103. MGM, Meteoroloji Genel Müdürlüğü, Hidrometeoroloji Şube Müdürlüğü, 2019.
  • 104. Kayhan M., Alan İ., Türkiye alansal yağış analizi 1971-2010, Meteoroloji Genel Müdürlüğü 2012.
  • 105. Aydın B., Uğurlu A., Kervankıran S., Öz Ö., Aksoy M., 2018 yılı yağış değerlendirmesi, Tarım ve Orman Bakanlığı, Meteoroloji Genel Müdürlüğü 2019.
Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi-Cover
  • ISSN: 1300-1884
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1986
  • Yayıncı: Oğuzhan YILMAZ
Sayıdaki Diğer Makaleler

Günlük temelli orta vadeli şehir doğal gaz talebinin tek değişkenli istatistik teknikleri ile tahmini

Mustafa AKPİNAR, Nejat YUMUŞAK

Gaz atomizasyonu yöntemi ile üretilen AM60 magnezyum alaşım tozunun toz karakterizasyonu üzerine gaz basıncının etkisinin araştırılması

Tayfun ÇETİN, Mehmet AKKAŞ, Mustafa BOZ

Termal görüntülerdeki gömülü plastik anti-personel mayınlarının dairesel hough dönüşümü destekli aktif termografi yöntemi ile tespiti

Murat KILINÇ, Haluk GÖZDE

İşleme merkezi seçim problemlerinde kullanılan çok kriterli karar verme yöntemi uygulamalarında kriter ve alternatif sayısının sıralama sonuçlarına etkisinin incelenmesi

Yusuf Tansel İÇ, Mustafa YURDAKUL

Geliştirilmiş mikrodalga sisteminin elastik poliüretan köpüğünün geri dönüşümüne etkisi

Basak TEMUR ERGAN

Seyhan Baraj rezervuarında katı madde birikimi etkisinin incelenmesi

Şerife Pınar GÜVEL, Recep YURTAL

Gerçek deniz ortamında su altı kaynağı ile birleştirilen Grade AH36 gemi sacının kaynak bölgesinin karakterizasyonu

Zahit ÇOLAK, Yusuf AYAN, Nizamettin KAHRAMAN

Elektrikli araçlar için mıknatıs oranı ve moment titreşimi azaltılmış yüksek verimli sürekli mıknatıslı senkron motor tasarım süreci ve gerçeklenmesi

Hatice KURNAZ ARAZ, Murat YİLMAZ

Termoelektrik etki ile soğutulan bir fotovoltaik panelin performansının analizi

Ahmet YILANCI

Yüksek hızlı demiryolu köprülerinde aşırı titreşimlerin azaltılmasında paralel bağlı ayarlı kütle sönümleyiciler için basit bir tasarım yöntemi

Volkan KAHYA, Onur ARAZ