Tek değişkenli zaman serileri tahmini için öznitelik tabanlı hibrit ARIMA-YSA modeli

Zaman serilerinde yüksek performanslı tahminleme yapabilmek birçok uygulama alanı için temel öneme sahiptir.  Literatürde zaman serisi tahmin doğruluğunu artırmak için birçok metot önerilmiştir. Bu metotlardan tek değişkenli zaman serilerine odaklanmış olanlar, serinin sadece geçmiş tarihinde yer alan değerleri kullanarak, gelecekteki değerlerin tahminini yapmaktadır. Bu çalışmada, tek değişkenli zaman serilerinin geçmiş değerlerinin yanında, serinin karakteristiğini özetleyen yapısal özniteliklerinin de kullanılarak, tahmin performansının artırılması hedeflenmiştir. Zaman serilerinin istatistiksel özetini sunan özniteliklerin önem puanları gradyan artırım ağaçları (GBT) ile belirlenmektedir. En yüksek önem puanına sahip olan öznitelikler, hibrit ARIMA-YSA modeline açıklayıcı ilave değişkenler olarak verilmektedir. Geliştirilen yöntemin değerlendirilmesi dört farklı veri seti üzerinde yapılmış olup, mevcut kabul görmüş yöntemlere kıyasla daha başarılı sonuçlar elde edildiği görülmüştür.

___

  • Weigend, A, Time series prediction: forecasting the future and understanding the past, New York: Routledge, 2018.
  • J. Contreras, R. Espinola, F. Nogales, A. J. Conejo, ARIMA Models to Predict Next-Day Electricity Prices, Power Engineering Review, IEEE 22 (2002) 57-57. doi:10.1109/MPER.2002.4312577.
  • E. Gonzalez-Romera, M. A. Jaramillo-Moran, D. Carmona-Fernandez, Monthly Electric Energy Demand Forecasting Based on Trend Extraction, IEEE Transactions on Power Systems 21 (4) (2006) 1946-1953. doi:10.1109/TPWRS.2006.883666.
  • V. K P, P. Sahu, B. Dhekale, P. Mishra, Modelling and Forecasting Sugarcane and Sugar Production in India, Indian Journal of Economics and Development 12 (2016) 71. doi:10.5958/2322-0430.2016.00009.3.
  • W.-c. Wang, K.-w. Chau, D.-M. Xu, X.-Y. Chen, Improving Forecasting Accuracy of Annual Runo Time Series Using ARIMA Based on EEMD Decomposition, Water Resources Management 29 (2015) 2655-2675. doi: 10.1007/s11269-015-0962-6.
  • V. Ediger, S. Akar, ARIMA forecasting of primary energy demand by fuel in Turkey, Energy Policy 35 (2007) 1701-1708. doi:10.1016/j.enpol.2006.05.009.
  • A. Lapedes, R. Farber, Nonlinear Signal Processing Using Neural Networks: Prediction and System Modelling, 1. IEEE international conference on neural networks, 1987, San Diego.
  • W.-S. Chen, Y.-K. Du, Using Neural Networks and Data Mining Techniques for the Financial Distress Prediction Model, Expert Syst. Appl. 36 (2) (2009) 4075-4086. doi:10.1016/j.eswa.2008.03.020.
  • D. Singhal, K. S. Swarup, Electricity price forecasting using artificial neural networks, International Journal of Electrical Power Energy Systems 33 (3) (2011) 550-555. doi:10.1016/j.ijepes.2010.12.009.
  • C. H. F. Toro, S. Gomez Meire, J. F. Galvez, F. Fdez-Riverola, A hybrid artificial intelligence model for river flow forecasting, Applied Soft Computing 13 (8) (2013) 3449-3458. doi:10.1016/j.asoc.2013.04.014.
  • B. R. Chang, H. F. Tsai, Novel hybrid approach to data-packet-flow prediction for improving network traffic analysis, Applied Soft Computing 9 (3) (2009) 1177-1183. doi:10.1016/j.asoc.2009.03.003.
  • G. Cybenko, Approximation by superpositions of a sigmoidal function, Mathematics of Control, Signals and Systems (4) (1992) 455-455. doi:10.1007/BF02134016.
  • K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are universal approximators, Neural Networks 2 (5) (1989) 359-366. doi: 10.1016/0893-6080(89)90020-8.
  • P. Zhang, Time Series Forecasting Using a Hybrid ARIMA and Neural Network Model. Neurocomputing 50, 159-175, Neurocomputing 50 (2003) 159-175. doi:10.1016/S0925-2312(01)00702-0.
  • W. R. Foster, F. Collopy, L. H. Ungar, Neural network forecasting of short, noisy time series, Computers Chemical Engineering 16 (4) (1992) 293-297. doi:10.1016/0098-1354(92)80049-F.
  • S. Aras, D. Kocako, A new model selection strategy in time series forecasting with artificial neural networks: IHTS, Neurocomputing 174 (2016) 974-987. doi:10.1016/j.neucom.2015.10.036.
  • P. Chakradhara and V. Narasimhan, Forecasting exchange rate better with artificial neural network, Journal of Policy Modeling 29, pp. 227–236, 2007.
  • M. Khashei, M. Bijari, A Novel Hybridization of Artificial Neural Networks and ARIMA Models for Time Series Forecasting, Appl. Soft Comput. 11 (2) (2011) 2664-2675. doi:10.1016/j.asoc.2010.10.015.
  • C. N. Babu, B. E. Reddy, A Moving-average Filter Based Hybrid ARIMA-ANN Model for Forecasting Time Series Data, Appl. Soft Comput. 23 (2014) 27-38. doi:10.1016/j.asoc.2014.05.028.
  • Ü. Ç. Büyükşahin, Ş. Ertekin, Improving forecasting accuracy of time series data using a new ARIMA-ANN hybrid method and empirical mode decomposition, arXiv:1812.11526 [cs], Jan 2019.
  • X. Wang, K. Smith, R. Hyndman, Characteristic-based clustering for time series data, Data Min. Knowl. Discov. 13 (3) (2006) 335–364.
  • X. Wang, K. Smith, R. Hyndman. (2005) Dimension Reduction for Clustering Time Series Using Global Characteristics. In: Sunderam V.S., van Albada G.D., Sloot P.M.A., Dongarra J. (eds) Computational Science – ICCS 2005. ICCS 2005. Lecture Notes in Computer Science, vol 3516. Springer, Berlin, Heidelberg
  • B. D. Fulcher and N. S. Jones. Highly Comparative Feature-Based Time-Series Classification. In: IEEE Transactions on Knowledge and Data Engineering 26.12 (Dec. 2014), pp. 3026–3037. issn: 1041-4347. doi: 10.1109/TKDE.2014.2316504.
  • RJ Hyndman, E Wang, N Laptev, Large-scale unusual time series detection. IEEE International Conference on Data Mining Workshop (ICDMW), 14-17 Nov. 2015. doi: 10.1109/ICDMW.2015.104.
  • N. Laptev, J. Yosinski, L. Erran, S. Smyl, Time-series Extreme Event Forecasting with Neural Networks at Uber, International Conference on Machine Learning, 2017.
  • E. T. Hibon M., To combine or not to combine: selecting among forecasts and their combinations. International Journal of Forecasting, International Journal of Forecasting 21 (2005) 15-24.
  • Friedman, J.H. Stochastic gradient boosting. Comput. Stat. Data Anal. 2002, 38, 367–378.
  • Friedman, J.; Hastie, T.; Tibshirani, R. The Elements of Statistical Learning; Springer Series in Statistics; Springer: Berlin, Germany, 2001; Volume 1.
  • Breiman, L., Friedman, J.H., Olshen, R.A., and Stone, C.I. (1984). Classification and regression trees. Belmont, Calif.: Wadsworth.
  • Intraday EPIAS, https://www.epias.com.tr/en/intra-day-market/ introduction, 2018, (Erişim tarihi Kasım 12, 2018).
Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi-Cover
  • ISSN: 1300-1884
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1986
  • Yayıncı: Oğuzhan YILMAZ
Sayıdaki Diğer Makaleler

Kalp seslerini kaydeden ve otomatik S1-S2 dalgası belirleyen sistem tasarımı

Mehmet Feyzi AKŞAHİN, Burcu OLTU, Büşra Kübra KARACA

Açı ve polarizasyondan bağımsız ultra geniş bantlı frekans seçici yüzey tasarımı

Aybike KOCAKAYA, Gonca ÇAKIR, Sibel ÇİMEN

Çöz-aktar röle-yardımlı-NOMA sistemlerinin hata başarımlarının analizi ve kullanıcılar arası adillik için bir güç paylaşım protokolü

Ferdi KARA, Hakan KAYA

Dönüştürülmüş ölçümler Kalman filtresi tabanlı skalerle ağırlıklandırılmış etkileşimli çoklu model

Kübra TURGUT, Ali Köksal HOCAOĞLU

K-boyutlu ağaç ve uyarlanabilir yarıçap (KD-AR Stream) tabanlı gerçek zamanlı akan veri kümeleme

Ali ŞENOL, Hacer KARACAN

Uzun kısa-dönem bellekli sinir ağlarıyla prozodik açıdan türkçe ağız tanıma

Gültekin IŞIK, Harun ARTUNER

Titanyum ile tane inceltmenin Al-25Zn alaşımının mikroyapı, mekanik ve korozyon özelliklerine etkisinin incelenmesi

Ali Paşa HEKİMOĞLU, Merve ÇALIŞ

Maksimum bağlanabilirlik kapasitesi hesabına yönelik geliştirilen yeni bir matematiksel model

Kadir DOĞANŞAHİN, Bedri KEKEZOĞLU, Recep YUMURTACI

Atık yumurta kabuklarından sentezlenen hidroksiapatitin Remazol N.Blue RGB boyarmaddesinin adsorpsiyonunda değerlendirilmesi

Müjgan OKUR, Dilşad Dolunay ESLEK KOYUNCU

Sarı Kantaron (Hypericum perforatum) katkılı kitosan ve jelatin esaslı yara örtücü filmlerinin üretimi ve karakterizasyonu

İlknur KÜÇÜK, Nigar YILDIRIM