Sıcaklık ve gerinim hızının grafen benzeri $C_4N_3$ yapısının mekanik özellikleri üzerindeki etkisi

Son yıllarda, iki boyutlu (2B) karbon bazlı nanomalzemeler sahip oldukları yüksek fiziksel özellikleri nedeniyle önemli ilgi görmektedir. Bu araştırmada, grafen benzeri $C_4N_3$ yapısının mekanik özellikleri moleküler dinamik (MD) simülasyonları kullanılarak detaylı bir şekilde incelenmiştir. MD simulasyonları sonuçlarına göre, bu yapı üstün mekanik özellikler (çekme dayanımı, elastisite modülü ve kopma gerinimi) göstermektedir. Grafen benzeri $C_4N_3$ yapısının mekanik özellikleri farklı yükleme yönlerinde 200 K ile 900 K arasındaki beş farklı sıcaklıkta ve $10^7 s^{-1} ile 10^9 s^{-1}$ arasındaki farklı gerinim hızlarında incelenmiştir. MD sonuçları, bu 2B yapıların mekanik özelliklerinin, sıcaklık arttıkça, yüksek sıcaklığın zayıflatma etkisi nedeniyle yavaş yavaş azaldığını göstermektedir. MD sonuçları, bu yapının mekanik özelliklerinin, yüksek sıcaklığın atomlar arasındaki bağlanma enerjisini zayıflatma etkisi nedeniyle sıcaklık arttıkça yavaş yavaş azaldığı görülmektedir. Ayrıca, gerinim hızı arttığında, mekanik özellikler artış eğilimi göstermektedir. Bu yapının mekanik özellikleri armchair ve zigzag yönlerinde gerçekleştirilen yüklemeler sonucunda izotropiktir. Ek olarak, 300 K'de grafen benzeri$C_4N_3$ yapısının deformasyon süreci incelenmiştir. MD simülasyon sonuçları göstermiştir ki bu yapın gevrek kırılma mekanizmasına sahiptir. Bu çalışma sonuçlarının, gerçekleştirilecek 2B karbon-bazlı nano cihazların mekanik yönetimi için fayda sağlayacağı beklenmektedir.

The influence of temperature and strain rate on the mechanical properties of graphene-like $C_4N_3$ structure

Two-dimensional (2D) carbon-based nanomaterials have received significant attention because of their high physical properties, in recent years. In this investigation, the mechanical properties of graphene-like $C_4N_3$ structure are studied in detail, using molecular dynamics (MD) simulations. According to the results of MD simulations, this structure shows superior mechanical properties (ultimate tensile strength, Young’s modulus and failure strain). The mechanical properties of graphene-like $C_4N_3$ structure are also examined at five distinct temperatures between 200 K and 900 K along the different loading directions and various strain rates from $10^7 s^{-1} ile 10^9 s^{-1}$. MD results show that the mechanical properties of this structure gradually decrease as temperature increases, due to the weakening effect of high temperature on the binding energy between atoms. Furthermore, as the strain rate increases, it is revealed that the mechanical properties show an increasing trend. The mechanical properties of this structure are isotropic as a result of loading in the armchair and zigzag directions. Additionally, at 300 K, the failure process of graphene-like $C_4N_3$ structure is examined. MD simulation results demonstrate that this structure has brittle failure mechanism. The results of this study may be considered helpful for future works of mechanical management of 2D carbon-based nanodevices.

___

  • 1. Ghosh S., Bao W., Nika D.L., Subrina S., Pokatilov E.P., Lau C.N., Balandin A.A., Dimensional crossover of thermal transport in few-layer graphene, Nat Mater, 9 (7), 555-558, 2010.
  • 2. Lee C., Wei X., Kysar J.W., Hone J., Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 321 (5887), 385-388, 2008.
  • 3. NovoselovK.S., GeimA.K., MorozovS.V., Jiang D., Katsnelson M.I., Grigorieva I.V, Dubonos S.V., Firsov A.A., Two-dimensional gas of massless Dirac fermions in graphene, Nature, 438, 197-200, 2005.
  • 4. Zhang Y.B., Tan Y.W., Stormer H.L., Kim P., Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature, 438, 201-204, 2005.
  • 5. Geim A.K., Novoselov K.S., The rise of graphene, Nat Mater, 6 (3), 183-191, 2007.
  • 6. Martins T.B., Miwa R.H., da Silva A.J., Fazzio A., Electronic and transport properties of boron-doped graphene nanoribbons, Phys Rev Lett, 98 (19), 196803, 2007.
  • 7. Lherbier A., Dubois S.M.-M., Declerck X., Niquet Y.- M., Roche S., Charlier J.-C., Transport properties of graphene containing structural defects, Phys Rev B, 86 (7), 075402, 2012.
  • 8. Lherbie A., Blase X., Niquet Y.M., Triozon F., Roche S., Charge transport in chemically doped 2D graphene, Phys Rev Lett, 101 (3), 036808, 2008.
  • 9. Wang X., Ouyang Y., Li X., Wang H., Guo J., Dai H., Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors, Phys Rev Lett, 100 (20), 206803, 2008.
  • 10. Hashmi A., Farooq U., Hong J., Graphene/phosphorene bilayer: High electron speed, optical property and semiconductor-metal transition with electric field, Curr Appl Phys, 16 (3), 318-323, 2016.
  • 11. Gao N., Li J.C., Jiang Q., Tunable band gaps in silicene– MoS2 heterobilayers, Phys Chem Chem Phys, 16 (23), 11673, 2014.
  • 12. You B., Wang X., Zheng Z., Mi W., Black phosphorene/monolayer transition-metal dichalcogenides as two dimensional van der Waals heterostructures: a first-principles study, Phys Chem Chem Phys, 18 (10), 7381, 2016.
  • 13. Medvedyeva M.V., Blanter Y.M., Piezoconductivity of gated suspended graphene, Phys Rev B, 83, 045426, 2011.
  • 14. Ma Y., Dai Y., Guo M., Niu C., Zhu Y., Huang B., Evidence of the existence of magnetism in pristine VX2 monolayers (X = S, Se) and their strain-induced tunable magnetic properties, ACS Nano, 6 (2), 1695-1701, 2012.
  • 15. Zhou Q., Wu M., Zhang M., Xu G., Yao B., Li C., Shi G., Graphene-based electrochemical capacitors with integrated high-performance, Mater Today Energy, 6, 181-188, 2017.
  • 16. Lee S.U., Belosludov R.V., Mizuseki H., Kawazoe Y., Designing nanogadgetry for nanoelectronic devices with nitrogen-doped capped carbon nanotubes, Small, 5 (15), 1769-1775, 2009.
  • 17. Li J., Cui W., Sun Y., Chu Y., Cen W., Dong F., Directional electron delivery via a vertical channel between g-C3N4 layers promotes photocatalytic efficiency, J Mater Chem A, 5, 9358-9364, 2017.
  • 18. Zheng Y., Liu J., Liang J., Jaroniec M., Qiao S.Z., Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis, Energy Environ Sci, 5, 6717-6731, 2012.
  • 19. Zhu G., Lü K., Sun Q., Kawazoe Y., Jena P., Lithiumdoped triazine-based graphitic C3N4 sheet for hydrogen storage at ambient temperature, Comput Mater Sci, 81, 275-279, 2014.
  • 20. Li X., Zhang S., Wang Q., Stability and physical properties of a tri-ring based porous g-C4N3 sheet, Phys Chem Chem Phys, 15, 7142-7146, 2013.
  • 21. Mannix A.J., Kiraly B., Hersam M.C., Guisinger N.P., Synthesis and chemistry of elemental 2D materials, Nature Reviews Chemistry, 1, 0014, 2017.
  • 22. Du A., Sanvito S., Smith S.C., First-principles prediction of metal-free magnetism and intrinsic halfmetallicity in graphitic carbon nitride, Phys Rev Lett, 2012, 108, 197207.
  • 23. Mortazavi B., Ultra high stiffness and thermal conductivity of graphene like C3N, Carbon, 118, 25-34, 2017.
  • 24. Mahmood J., Lee E.K., Jung M., Shin D., Choi H.-J., Seo J.-M., Jung S.-M., Kim D., Li F., Lah M.S., Park N., Shin H.-J., Oh J.H., Baek J.-B., Two dimensional polyaniline (C3N) from carbonized organic single crystals in solid state, Proc Natl Acad Sci, 113, 7414- 7419, 2016.
  • 25. Xu Y, Gao S.-P., Band gap of C3N4 in the GW approximation, Int J Hydrog Energy, 37 (15), 11072- 11080, 2012.
  • 26. Bafekry A., Neek-Ama M., Tuning the electronic properties of graphene–graphitic carbon nitride heterostructures and heterojunctions by using an electric field, Phys Rev B, 101, 085417, 2020.
  • 27. Mortazavi B., Rahaman O., Rabczuk T., Pereira L.F.C., Thermal conductivity and mechanical properties of nitrogenated holey graphene, Carbon, 106, 1-8, 2016.
  • 28. Mortazavi B., Cuniberti G., Rabczuk T., Mechanical properties and thermal conductivity of graphitic carbon nitride: A molecular dynamics study, Comput Mater Sci, 99, 285-289, 2015.
  • 29. Plimpton S., Fast parallel algorithms for short-range molecular dynamics, J Comp Phys, 117 (1), 1-19, 1995.
  • 30. Tersoff J., New empirical approach for the structure and energy of covalent systems, Phys Rev B, 37 (12), 6991- 7000, 1988.
  • 31. Tersoff J., Empirical interatomic potential for carbon, with applications to amorphous carbon, Phys Rev Lett, 61, 2879-2882, 1988.
  • 32. Lindsay L., Broido D.A., Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene, Phys Rev B, 81 (20), 205441, 2010.
  • 33. Matsunaga K., Fisher C., Matsubara H., Tersoff potential parameters for simulating cubic boron carbonitrides, Jpn Soc Appl Phys, 39 (1), 48-51, 2000.
  • 34. Senturk A.E., Oktem A.S., Konukman A.E.S., Influence of defect locations and nitrogen doping configuration on the mechanical properties of armchair graphene nanoribbons, J Mol Model, 24 (2), 43, 2018.
  • 35. Şentürk A., Öktem A., Konukman A, Investigation of the effects of nitrogen doping within different sites of Stone-Wales defects on the mechanical properties of graphene by using a molecular Dynamics simulation method, Journal of the Faculty of Engineering and Architecture of Gazi University, 34 (1), 69-78, 2019.
  • 36. Senturk A.E., Oktem A.S., Konukman A.E.S., Effects of the nitrogen doping Configuration and site on the thermal conductivity of defective armchair graphene nanoribbons, J Mol Model, 23 (8), 247, 2017.
  • 37. Senturk A.E., Oktem A.S., Konukman A.E.S., Investigation of interfacial thermal resistance of hybrid graphene/hexagonal boron nitride, Int J Mech Mater Des, 15 (4), 727-737, 2019.
  • 38. Hoover W.G., Canonical dynamics: Equilibrium phasespace distributions, Phys Rev A, 31 (3), 1695- 1697, 1985.
  • 39. Mortazavi B., Ahzi S., Molecular dynamics study on the thermal conductivity and mechanical properties of boron doped graphene, Solid State Commun, 152 (15), 1503-1507, 2012.
  • 40. Senturk A.E., Oktem A.S., Konukman A.E.S., An investigation on the thermo-mechanical properties of boron-doped g-C3N4, Appl Phys A, 125 (1), 53, 2019.
  • 41. Bafekry A., Stampfl C., Akgenc B., Ghergherehchi M., Control of C3N4 and C4N3 carbon nitride nanosheets’ electronic and magnetic properties through embedded atoms, Phys Chem Chem Phys, 22, 2249-2261, 2020.
  • 42. Senturk A.E., Outstanding thermo-mechanical properties of graphene-like B3C3 and C3N3, Appl Phys A, 126 (8), 1-15, 2020.
  • 43. Sousa J.M., Botari T., Perim E., Bizaoad R.A., Galvao D.S., Mechanical and structural properties of graphenelike carbon nitride sheets, RSC Adv, 6 (80), 76915- 76921, 2016.
Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi-Cover
  • ISSN: 1300-1884
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1986
  • Yayıncı: Oğuzhan YILMAZ