Nanoakışkan kullanımının farklı motor devirlerindeki etkilerinin deneysel incelenmesi

Sıvı soğutucu akışkanı içerisine nano boyuttaki metal partiküller karıştırılarak motor içerisindeki ısı iletimini arttırmak mümkündür. Bu çalışmada da bir taşıtın motor soğutma sistemindeki baz soğutucu akışkan içerisine %0,1 ve %0,2 oranlarında SiO2, TiO2, Al2O3 nanoakışkanları ilave edilerek 1000, 2000, 3000 ve 4000 dev/dk çalıştırılan motorun soğutma sistemindeki sıcaklık değişimleri incelenmiştir. Ayrıca bu devirlerdeki CO2, HC, CO, NOx ve O2 egzoz emisyonlarındaki değişimler de incelenmiştir. Baz akışkana eklenen nanoakışkanların oranları arttıkça ısı iletiminin arttığı, ancak 3000 ve 4000 dev/dk ısı iletimin düştüğü gözlemlenmiştir. Düşük sıcaklık değerleri için çalışılan tüm nanoakışkan karışımlarında görülen olumlu ısı iletim etkisi, motordaki devir artışıyla birlikte soğutucu sıcaklık değerlerinin yükselmesi durumunda görülmemiştir. Dolayısı ile nanoakışkan karışımlarının her koşulda ısı iletimini iyileştirmediği belirlenmiştir. Ayrıca partikül oranındaki artış ısı iletiminde olumlu etkiye sahip olduğunu göstermiştir. CO2, HC, CO ve O2 emisyonları için baz akışkana kıyasla egzoz emisyon değerlerinde belirgin farklılıklar oluşmamıştır. NOx emisyon değerlerinde ise farklı motor devirleri için sırası ile yaklaşık %28, %27, %25 ve %21 oranında düşüşler olduğu tespit edilmiştir. Sıcaklık ve emisyon ölçümlerinde genelde en iyi sonuçlar %0,2 SiO2 nanoakışkanında elde edilmiştir.

___

  • 1. Jadar R., Shashishekar K.S., Manohara S.R., F-MWCNT Nanomaterial Integrated Automobile Radiator. Materials Today, Proceedings, 4 (10), 11028–11033, 2017. https://doi:10.1016/j.matpr. 2017.08.062.
  • 2. Salami Tijani A., Suhail bin Sudirman A., Thermos-physical properties and heat transfer characteristics of water/anti-freezing and Al2O3 / CuO based nanofluid as a coolant for car radiator, International Journal of Heat and Mass Transfer, 118, 2018, 48-57.
  • 3. Hussein .M., Bakar R.A., Kadirgama K., Study of forced convection nanofluid heat transfer in the automotive cooling system, Case Studies in Thermal Engineering, 2, 50–61, 2014. doi: 10.1016/j.csite.2013.12.001.
  • 4. Peyghambarzadeh S.M., Hashemabadi S.H., Hoseini S.M., Seifi Jamnani M., Experimental study of heat transfer enhancement using water/ethylene glycol-based nanofluids as a new coolant for car radiators, International Communications in Heat and Mass Transfer, 38 (9), 1283–1290, 2011. https://doi:10.1016/j.icheatmasstransfer. 2011.07.001.
  • 5. Syam Sundar L., Kirubeil A., Punnaiah V., Singh M.K., Sousa AC.M., Effectiveness analysis of solar flat plate collector with Al2O3 water nanofluids and with longitudinal strip inserts, International Journal of Heat and Mass Transfer, 127, 422–435, 2018.
  • 6. Leong K. Y., Saidur R., Mahlia Tmi., Yau Yh., Performance investigation of nanofluids as working fluid in a thermosyphon air preheater, International Communications in Heat and Mass Transfer, 39 (4), 523–529, 2012.
  • 7. Krishnakumar T. S., Viswanath S. P., Varghese S. M., Jose Prakash M, Experimental studies on thermal and rheological properties of Al2O3–ethylene glycol nanofluid, International Journal Refrigeration, 89, 122–130, 2018.
  • 8. Muhammad Ali H., Ali H., Liaquat H., Talha Bin Maqsood H., Experimental investigation of convective heat transfer augmentation for car radiator using ZnOe water nanofluids, Energy, 84, 317-324, 2015.
  • 9 Hatami M., Jafaryar M., Zhou J., Jing D., Investigation of engines radiator heat recovery using different shapes of nanoparticles in H2O / (CH2OH)2 based nanofluids, International Journal of Hydrogen Energy, 42, 10891-10900, 2017.
  • 10. Sandhya D., Chandra M., Reddy S., Vasudeva Rao V., Improving the cooling performance of automobile radiator with ethylene glycol water-based TiO2 nanofluids, International Communications in Heat and Mass Transfer, 78, 121-126, 2016.
  • 11. Subhedar D.G., Ramani B.M., Gupta A., Experimental investigation of heat transfer potential of Al2O3 / Water-Mono Ethylene Glycol nanofluids as a car radiator coolant, Case Studies in Thermal Engineering, 11, 26—34, 2018.
  • 12. Ali Ahmed S., Ozkaymak M., Sözen A., Menlik T., Fahed A., Improving car radiator performance by using TiO2-water nanofluid, Engineering Science and Technology, an International Journal, 21, 996 -1005 , 2018.
  • 13. Elias M.M., Mahbubul I.M., Saidur R., Sohel M.R., Shahrul I.M., Khaleduzzaman S.S., Sadeghipour S., Experimental investigation on the thermo-physical properties of Al2O3 nanoparticles suspended in car radiator coolant, International Communications in Heat and Mass Transfer, 54, 48-53, 2014.
  • 14. Goudarzi K., Jamali H., Heat transfer enhancement of Al2O3-EG nanofluid in a car radiator with wire coil inserts, Applied Thermal Engineering, 118, 510-517, 2017.
  • 15. Peyghambarzadeh S.M., Hashemabadi S.H., Seifi Jamnani M., Hoseini S.M., Improving the cooling performance of automobile radiator with Al2O3 / water nanofluid, Applied Thermal Engineering, 31, 1833-1838, 2011.
  • 16. Elsebay M., Elbadawy I., Shedid M.H., Fatouh M., Numerical resizing study of Al2O3 and CuO nanofluids in the flat tubes of a radiator, Applied Mathematical Modelling, 40, 6437—6450, 2016.
  • 17. Naraki M., Peyghambarzadeh S.M., Hashemabadi S.H., Vermahmoudi Y., Parametric study of overall heat transfer coefficient of CuO / water nanofluids in a car radiator, International Journal of Thermal Sciences, 66, 82-90, 2013.
  • 18. Selvam C., Solaimalai Raja R., Mohan Lal D., Sivasankaran Harish, Overall heat transfer coefficient improvement of an automobile radiator with graphene-based suspensions, International Journal of Heat and Mass Transfer, 115, 580-588, 2017.
  • 19. Yuksel T., Kapicioglu A., Experimental Investigation of the Effect of Nanofluid Supported Vehicle Engine Cooling System on Engine Emission Values. II. International Conference on Innovative Engineering Applications (CIEA’ 2021), Muş, Turkey, 405-413, 20-22 May 2021.
  • 20. Yuksel T., Kapicioglu A., Experimental Investigatıon of The Effects on Engine Oil Temperature of Different Nanofluids Used in Vehicle Engine Cooling System, International Journal of Innovative Engineering Applications, 5 (1), 22-29, 2021.
  • 21. Hussein A. M., Dawood H. K., Bakara R. A., Kadirgamaa K., Numerical study on turbulent forced convective heat transfer using nanofluids TiO2 in an automotive cooling system, Case Studies in Thermal Engineering, 9, 72–78, 2017. doi: 10.1016/j.csite.2016.11.005.
  • 22. Jadar R., Shashishekar K. S., Manohara S. R., Nanotechnology Integrated Automobile Radiator, Materials Today, Proceedings, 4 (11), 12080–12084, 2017. doi: 10.1016/j.matpr.2017.09.134.
  • 23. Peyghambarzadeh S.M., Hashemabadi S.H., Jamnani M.S., Hoseini S.M., Improving the cooling performance of automobile radiator with Al2O3/water nanofluid, Applied Thermal Engineering, 31 (10), 1833–1838, 2011. https://doi:10.1016/j.applthermaleng. 2011.02.029.
  • 24. Tadepalli R., Gadekula R.K., Reddy K.V., Goud S.R., Nayak S.K., Saini V., Dondapati R.S., Characterization of Thermophysical properties of Al2O3, TiO2, SiO2, SiC, and CuO Nano Particles at Cryogenic Temperatures. Materials Today, Proceedings, 5 (14), 28454–28461, 2018. https://doi:10.1016/j.matpr. 2018.10.132.
  • 25. M’hamed B., Che Sidik N.A., Akhbar M.F.A., Mamat R., Najafi G., Experimental study on the thermal performance of MWCNT nanocoolant in Perodua Kelisa 1000cc radiator system, International Communications in Heat and Mass Transfer, 76, 156–161, 2016. https://doi:10.1016/j.icheatmasstransfer. 2016.05.024.
  • 26. Muruganandam M., Mukesh Kumar P.C., Experimental analysis on internal combustion engine using MWCNT/water nanofluid as a coolant. Materials Today, Proceedings, 21, 248–252, 2020. https://doi:10.1016/j.matpr. 2019.05.411.
  • 27. Li X., Zou C., Qi A., Experimental study on the thermo-physical properties of car engine coolant (water/ethylene glycol mixture type) based SiC nanofluids, International Communications in Heat and Mass Transfer, 77, 159–164, 2016. https://doi:10.1016/j.icheatmasstransfer. 2016.08.009.
  • 28. Elsaid A.M., Experimental study on the heat transfer performance and friction factor characteristics of Co3O4 and Al2O3 based H2O/(CH2OH)2 nanofluids in a vehicle engine radiator, International Communications in Heat and Mass Transfer, 108, 104263, 2019. https://doi:10.1016/j.icheatmasstransfer. 2019.05.009.
  • 29. Nieh H.M., Teng T.P., Yu C.C., Enhanced heat dissipation of a radiator using oxide nano-coolant, International Journal of Thermal Sciences, 77, 252–261, 2014. https://doi:10.1016/j.ijthermalsci. 2013.11.008.
  • 30. Mukherjee S., Chakrabarty S., Mishra P.C., Chaudhuri P., Transient heat transfer characteristics and process intensification with Al2O3-water and TiO2-water nanofluids, An experimental investigation. Chemical Engineering & Processing, Process Intensification, 150, 107887, 2020. https://doi:10.1016/j.cep. 2020.107887.
  • 31. Said Z., Assad M.E.H., Hachicha A.A., Bellos E., Abdelkareem M.A., Alazaizeh D.Z., Yousef B.A.A., Enhancing the performance of automotive radiators using nanofluids, Renewable and Sustainable Energy Reviews, 112, 183–194, 2019. https://doi:10.1016/j.rser. 2019.05.052.
  • 32. Che Sidik N. A., Witri Mohd Yazid M. N. A., Mamat R., Recent advancement of nanofluids in engine cooling system, Renewable and Sustainable Energy Reviews, 75, 137–144, 2017. doi: 10.1016/j.rser.2016.10.057.
  • 33. Chiam H.W., Azmi W.H., Usri N.A., Mamat R., Adam N.M., Thermal conductivity and viscosity of Al2O3 nanofluids for different based ratio of water and ethylene glycol mixture, Experimental Thermal and Fluid Science, 81, 420-429, 2017. https://doi:10.1016/j.expthermflusci. 2016.09.013
  • 34. Tawfik M.M., Experimental studies of nanofluid thermal conductivity enhancement and applications , A review, Renewable and Sustainable Energy Reviews, 75, 1239–1253, 2017. https://doi:10.1016/j.rser. 2016.11.111.
  • 35. Oztop H.F., Abu-Nada E., Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids, International Journal of Heat and Fluid Flow, 29 (5), 1326–1336, 2008. https://doi:10.1016/j.ijheatfluidflow. 2008.04.009.
  • 36. Al-damook A., Alfelleg M.A., Khalil W.H., Three‐dimensional computational comparison of mini pinned heat sinks using different nanofluids, Part one—the hydraulic‐thermal characteristics, Heat Transfer, 49 (1), 441–460, 2020. https://doi:10.1002/htj.21628.
  • 37. Yuksel T., Temizer I., Can I., Koca F., Investigation of the Using Heated Bioethanol as a Dual Fuel in a Gasoline Engine, Firat University Journal of Engineering Science, 31 (1), 67-77, 2019.
Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi-Cover
  • ISSN: 1300-1884
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1986
  • Yayıncı: Oğuzhan YILMAZ
Sayıdaki Diğer Makaleler

Yapay zeka tarafından kontrol edilen yeni bir termoelektrik CPU soğutma sistemi

İlhan UMUT, Dinçer AKAL

3 Boyutlu yazıcı kullanılarak üretilen sandviç kompozitlerin düşük hızda darbe performanslarının araştırılması

Serdar KAVELOĞLU, Şemsettin TEMİZ

Pigmentlerin ve kompozisyonun renkli porselen çamur ve bünye özelliklerine etkisinin araştırılması

Özge ÖZEL, Evren ARIÖZ, Hanife KADIOĞLU

Üretim parametrelerinin, lazer toz yatağı füzyon yöntemi ile üretilen kafes yapıların çarpılma, boyutsal değişim ve yüzey pürüzlülüğü üzerindeki etkisi

Orhan GÜLCAN, Ugur SİMSEK, Mirhan ÖZDEMİR, Kadir GÜNAYDIN, Emre TEKOĞLU

HBIM destekli arşiv modeli

Merve ANAÇ, E. Gorun ARUN

Yüksek derecede kurum üreten 2B Gazyağı/Hava difüzyon alevleri üzerinde diferansiyel yayılımın ve basıncın etkileri

Ayşe KORUCU, Richard MİLLER

REBA yönteminin sınıf içi ve sınıflar arası güvenilirliği: Bir otomotiv yan sanayi firması uygulaması

Gülçin ÇAKMAK, Hatice ESEN

Dinamik talep cevabı içeren zaman gecikmeli iki bölgeli yük frekans kontrol sistemlerinin kararlılık bölgelerinin hesaplanması

Deniz KATİPOĞLU, Şahin SÖNMEZ, Saffet AYASUN

Elektromanyetik dalga yayılım ve saçılım problemlerine analitik ve sayısal pertürbasyon teknikleri ile çözüm yaklaşımı

Murat Koray AKKAYA, Asım Egemen YILMAZ, Mustafa KUZUOĞLU

Kolaboratif robot kullanılan sipariş-toplama depo tasarımlarının eniyilenmesi

Mahmut TUTAM