Jelatin ve PVA kaplı nanopartiküller ile EP yağ katkısının tribolojik performanslarının araştırılması

Bu çalışmada etilen glikol (EG) sıvısına EP ve farklı ligandlarla kaplanmış gümüş nano partikülleri (AgNP) takviye edilerek hazırlanmış yağlayıcının, CuSn10Zn kalay bronzundan imal edilmiş yatak malzemesinin tribolojik performansına etkisi araştırılmıştır. EP takviyesinin tribolojik analizi için kuru ortam, saf EG ve EG sıvısına %5, %10, %15 oranlarında EP takviye edilerek hazırlanan yağlayıcı ortamlarında aşınma deneyleri gerçekleştirilerek optimum EP oranı belirlenmiştir. Belirlenen optimum EP ile birlikte %2, %5 ve %8 oranlarında ve farklı ligandlar ile kaplanmış AgNP kullanılarak optimum AgNP konsantrasyonu ve ligand malzemesi belirlenmiştir. Optimum EP ve AgNP konsantrasyonlarının belirlendiği her iki aşamada da deneyler ball-on-plate tipi tribometre ile 20 N yük ve 40 dev/dk hız parametrelerinde gerçekleştirilmiştir. Deney sonuçları sürtünme katsayısı, aşınma hacmi değerleri ile SEM ve 3D topoğrafya görüntüleri kıyaslanarak analiz edilmiştir. Analiz sonuçlarına göre EG + %5 EP ortamında elde edilen sürtünme katsayısı ve aşınma hacmi değerlerinin %10 ve %15 konsantrasyonlarına kıyasla daha düşük olduğu belirlenmiştir. EG + %5 EP ile AgNP etkileşiminden elde edilen sonuçlara göre optimum AgNP konsantrasyonu %2, optimum ligand malzemesi de jelatin (Jel) olarak belirlenmiştir. EG + %5 EP + %2 AgNP_Jel koşullarında EG’ye kıyasla sürtünme katsayısı %18,70, hacim kaybı ise %16,94 oranında azaltılmıştır.

Investigation of tribological performances of EP oil additive with gelatin and PVA coated nanoparticles

In this study, the effect of the lubricant prepared by adding EP and silver nanoparticles (AgNP) coated with different ligands to the ethylene glycol (EG) liquid on the tribological performance of the bearing material made of CuSn10Zn tin bronze was investigated. For the tribological analysis of EP additive, the optimum EP ratio was determined by carrying out wear tests in dry medium, pure EG and lubricant media prepared by adding 5%, 10%, 15% EP to EG liquid. Optimum AgNP concentration and ligand material were determined by using 2%, 5% and 8% AgNP coated with different ligands together with the determined optimum EP. Experiments were carried out with a ball-on-plate type tribometer at 20 N load and 40 rpm speed parameters in both stages where the optimum EP and AgNP concentrations were determined. Experiment results were analyzed by comparing friction coefficient, wear volume values with SEM and 3D topography images. According to the analysis results, it was determined that the friction coefficient and wear volume values obtained in EG + 5% EP environment were lower than 10% and 15% concentrations. According to the results obtained from the interaction of EG + 5% EP with AgNP, the optimum AgNP concentration was determined as 2%, and the optimum ligand material was determined as gelatin (Gel). In EG + 5% EP + 2% AgNP_Gel conditions, the friction coefficient was reduced by 18.70% and the volume loss by 16.94% compared to EG.

___

  • 1. Li, H., Yin, Z., and Wang, Y., A study on the wear behavior of tin-based journal bearing under different working conditions, Industrial Lubrication And Tribology, 72 (3), 359–368, 2020.
  • 2. Ni, Y., Sun, N., Zhu, G., Liu, S., Liu, J., and Dong, G., Effect of different Cu6Sn5 morphology on the tribological properties of Babbitt alloy, Industrial Lubrication And Tribology, 74 (5), 580–587, 2022.
  • 3. Zainulabdeen, A. A., Hashim, F. A., and Assi, S. H., Mechanical Properties of Tin-Based Babbitt Alloy using the Direct Extrusion technique, IOP Conference Series: Materials Science And Engineering, 518 (3), 1–9, 2019.
  • 4. Ünlü, B. S. and Pinar, A. M., CuSn10 Yatakların Farklı Yükleme, Hız Ve Ortamlarda Yüzey Pürüzlülüğü Ve Aşınmaya Etkisi, (May), 16–18, 2011.
  • 5. Chidi, N. K., Uchenna, O. I., and Odo, J. U., Effect of Nickel and Iron Addition on the Structure and Mechanical Properties of Tin Bronze (Cu-10wt%Sn), American Journal Of Engineering, Technology And Society, 4 (6), 110–118, 2017.
  • 6. Abed, I. J. and Kadhim, H. A., Tribological Behaviour of Tin Bronze Alloys Produced by Different Casting Techniques, 2020.
  • 7. Ünlü, B. S., Durmuş, H., and Meriç, C., Determination of tribological properties at CuSn10 alloy journal bearings by experimental and means of artificial neural networks method, Industrial Lubrication And Tribology, 64 (5), 258–264, 2012.
  • 8. Huttunen-Saarivirta, E., Kilpi, L., Pasanen, A. T., Salminen, T., and Ronkainen, H., Tribocorrosion behaviour of tin bronze CuSn12 under a sliding motion in NaCl containing environment: Contact to inert vs. reactive counterbody, Tribology International, 151 (February), 106389, 2020.
  • 9. Rasep, Z., Muhammad Yazid, M. N. A. W., and Samion, S., Lubrication of textured journal bearing by using vegetable oil: A review of approaches, challenges, and opportunities, Renewable And Sustainable Energy Reviews, 146 (111191), 1–14, 2021.
  • 10. Senatore, A. and Rao, T. V. V. L. N., Partial Slip Texture Slider and Journal Bearing Lubricated with Newtonian Fluids: A Review, Journal Of Tribology, 140 (4), 1–20, 2018.
  • 11. Kabave Kilincarslan, S. and Cetin, M. H., Improvement of the milling process performance by using cutting fluids prepared with nano-silver and boric acid, Journal Of Manufacturing Processes, 56 (May), 707–717, 2020.
  • 12. Padgurskas, J., Rukuiza, R., Prosyčevas, I., and Kreivaitis, R., Tribological properties of lubricant additives of Fe, Cu and Co nanoparticles, Tribology International, 60, 224–232, 2013.
  • 13. Uflyand, I. E., Zhinzhilo, V. A., and Burlakova, V. E., Metal-containing nanomaterials as lubricant additives: State-of-the-art and future development, Friction, 7 (2), 93–116, 2019.
  • 14. Wang, B., Qiu, F., Barber, G. C., Zou, Q., Wang, J., Guo, S., Yuan, Y., and Jiang, Q., Role of nano-sized materials as lubricant additives in friction and wear reduction: A review, Wear, 490–491 (5988), 204206, 2022.
  • 15. Alves, S. M., Schroeter, R. B., Dos Santos Bossardi, J. C., and De Andrade, C. L. F., Influence of EP Additive on Tool Wear in Drilling of Compacted Graphite Iron Compacted, Journal Of The Brazilian Society Of Mechanical Sciences And Engineering, 33 (2), 197–202, 2011.
  • 16. Matuszewska, A. and Gradkowski, M., Antiwear action of mineral lubricants modified by conventional and uncoventional additives, Tribology Letters, 27 (2), 177–180, 2007.
  • 17. Kumar, B. S., Padmanabhan, G., and Krishna, P. V., Experimental Investigations of Vegetable Oil Based Cutting Fluids with Extreme Pressure Additive in Machining of AISI 1040 Steel, Manufacturing Science And Technology, 3 (1), 1–9, 2015.
  • 18. Dai, W., Kheireddin, B., Gao, H., and Liang, H., Roles of nanoparticles in oil lubrication, Tribology International, 102, 88–98, 2016.
  • 19. Reverberi, A. P., D’Addona, D. M., Bruzzone, A. A. G., Teti, R., and Fabiano, B., Nanotechnology in machining processes: Recent advances, Procedia CIRP, 79, 3–8, 2019.
  • 20. Cetin, M. H. and Korkmaz, S., Investigation of the concentration rate and aggregation behaviour of nano-silver added colloidal suspensions on wear behaviour of metallic materials by using ANOVA method, Tribology International, 147 (February), 10627, 2020.
  • 21. Srivyas, P. D. and Charoo, M. S., A review on tribological characterization of lubricants with nano additives for automotive applications, Tribology In Industry, 40 (4), 594–623, 2018.
  • 22. Khan, M. S., Sisodia, M. S., Gupta, S., Feroskhan, M., Kannan, S., and Krishnasamy, K., Measurement of tribological properties of Cu and Ag blended coconut oil nanofluids for metal cutting, Engineering Science And Technology, An International Journal, 22 (6), 1187–1192, 2019.
  • 23. Lee, K., Hwang, Y., Cheong, S., Choi, Y., Kwon, L., Lee, J., and Kim, S. H., Understanding the role of nanoparticles in nano-oil lubrication, Tribology Letters, 35 (2), 127–131, 2009.
  • 24. Sia, S. Y., Bassyony, E. Z., and Sarhan, A. A. D., Development of SiO2 nanolubrication system to be used in sliding bearings, International Journal Of Advanced Manufacturing Technology, 71 (5), 1277–1284, 2014.
  • 25. Zhao, J., Huang, Y., He, Y., and Shi, Y., Nanolubricant additives: A review, Friction, 9 (5), 891–917, 2021.
  • 26. Eltugral, N., Simsir, H., and Karagoz, S., Preparation of nano-silver-supported activated carbon using different ligands, Research On Chemical Intermediates, 42 (3), 1663–1676, 2016.
  • 27. Shrestha, S., Wang, B., and Dutta, P., Nanoparticle processing: Understanding and controlling aggregation, Advances In Colloid And Interface Science, 279, 1–16, 2020.
  • 28. Ilyas, S. U., Pendyala, R., and Marneni, N., Preparation, sedimentation, and agglomeration of nanofluids, Chemical Engineering And Technology, 37 (12), 1–12, 2014.
  • 29. Simsir, H., Eltugral, N., and Karagoz, S., The role of capping agents in the fabrication of nano-silver-decorated hydrothermal carbons, Journal Of Environmental Chemical Engineering, 7 (5), 1–9, 2019.
  • 30. Restrepo, C. V. and Villa, C. C., Synthesis of silver nanoparticles, influence of capping agents, and dependence on size and shape: A review, Environmental Nanotechnology, Monitoring And Management, 15, 1–11, 2021.
  • 31. Arancon, R. A. D., Lin, S. H. T., Chen, G., Lin, C. S. K., Lai, J., Xu, G., and Luque, R., Nanoparticle tracking analysis of gold nanomaterials stabilized by various capping agents, RSC Advances, 4 (33), 17114–17119, 2014.
  • 32. Babu, M. V. S., Krishna, A. R., and Suman, K. N. S., Review of Journal Bearing Materials and Current Trends, American Journal Of Materials Science And Technology, 4 (2), 72–83, 2015.
  • 33. Bouyer, J. and Fillon, M., An experimental analysis of misalignment effects on hydrodynamic plain journal bearing performances, Journal Of Tribology, 124 (2), 313–319, 2002.
  • 34. Lin, Y. C., Cho, Y. H., and Chiu, C. Te, Tribological Performance of EP Additives in Different Base Oils, Tribology Transactions, 55 (2), 175–184, 2012.
  • 35. Yadav, G., Tiwari, S., and Jain, M. L., Tribological analysis of extreme pressure and anti-wear properties of engine lubricating oil using four ball tester, Materials Today: Proceedings, 5 (1), 248–253, 2018.
  • 36. Huesmann-Cordes, A. G., Meyer, D., Brinksmeier, E., and Schulz, J., Influence of additives in metalworking fluids on the wear resistance of steels, Procedia CIRP, 13, 108–113, 2014.
  • 37. Raghs, H., Kondul, B., and Cetin, M. H., Investigation of Wear Behavior of Boronized H13 Steel under Environment of Nano-Silver-Added Lubricants Coated with Different Ligands, Surface Topography: Metrology And Properties, 8 (1), 2–33, 2020.
  • 38. Ananth, A. N., Daniel, S. C. G. K., Sironmani, T. A., and Umapathi, S., PVA and BSA stabilized silver nanoparticles based surface-enhanced plasmon resonance probes for protein detection, Colloids And Surfaces B: Biointerfaces, 85 (2), 138–144, 2011.
  • 39. Slepička, P., Kasálková, N. S., Siegel, J., Kolská, Z., and Švorčík, V., Methods of gold and silver nanoparticles preparation, Materials, 13 (1), 1, 2020.
  • 40. Berg, J. M., Romoser, A., Banerjee, N., Zebda, R., and Sayes, C. M., The relationship between pH and zeta potential of ∼ 30 nm metal oxide nanoparticle suspensions relevant to in vitro toxicological evaluations, Nanotoxicology, 3 (4), 276–283, 2009.
  • 41. Barathithasan, R., Electrophoretic Light Scattering ( Zeta Potential ) What is Zeta Potential ?, 1–50, 2018.
  • 42. Abbasi, E., Milani, M., Aval, S. F., Kouhi, M., Akbarzadeh, A., Nasrabadi, H. T., Nikasa, P., Joo, S. W., Hanifehpour, Y., Nejati-Koshki, K., and Samiei, M., Silver nanoparticles: Synthesis methods, bio-applications and properties, Critical Reviews In Microbiology, 42 (2), 173–180, 2016.
  • 43. Tran, Q. H., Nguyen, V. Q., and Le, A., Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives, Advances In Natural Sciences: Nanoscience And Nanotechnology, 4, 1–20, 2013.
  • 44. Kumar, B. S., Padmanabhan, G., and Krishna, P. V., Performance Assessment of Vegetable Oil based Cutting Fluids with Extreme Pressure Additive in Machining, Journal Of Advanced Research In Materials Science, 19 (1), 1–13, 2016.
  • 45. Prabu, L., Saravanakumar, N., and Rajaram, G., Influence of Ag nanoparticles for the anti-wear and extreme pressure properties of the mineral oil based nano-cutting fluid, Tribology In Industry, 40 (3), 440–447, 2018.
  • 46. Ahmaida, Y. A. A., Korkmaz, S., Kilincarslan, S. K., and Sirvan, O. C., Investigation of interaction of extreme pressure additive , load and sliding speed parameters with silver nano-particles in wear environment, Surface Topography: Metrology And Properties, 9 (4), 45020, 2021.
  • 47. Li, H., Zhang, Y., Li, C., Zhou, Z., Nie, X., Chen, Y., Cao, H., Liu, B., Zhang, N., Said, Z., Debnath, S., Jamil, M., Ali, H. M., and Sharma, S., Extreme pressure and antiwear additives for lubricant: academic insights and perspectives, International Journal Of Advanced Manufacturing Technology, 120 (2), 1–27, 2022.
  • 48. Safiei, W., Rahman, M. M., Yusoff, A. R., and Radin, M. R., Preparation, stability and wettability of nanofluid: A review, Journal Of Mechanical Engineering And Sciences, 14 (3), 7244–7257, 2020.
  • 49. Ajithkumar, J. P. and Anthony Xavior, M., Influence of Nano Lubrication in Machining Operations-A Review, Materials Today: Proceedings, 5 (5), 11185–11192, 2018.
  • 50. Bhuiyan, M. H. U., Saidur, R., Amalina, M. A., Mostafizur, R. M., and Islam, A. K. M. S., Effect of nanoparticles concentration and their sizes on surface tension of nanofluids, Procedia Engineering, 105, 431–437, 2015.
  • 51. Korkmaz, S., Pehlivanoglu, M., Orak, A., and Cetin, M. H., Investigation of Wear Behavior of Carbide Based Coated Rolling Roll Materials Under Dry and Lubricated Conditions, Surface Topography: Metrology And Properties, 9 (1), 1–19, 2021.
  • 52. Zhang, Y., Tudela, I., Pal, M., and Kerr, I., High strength tin-based overlay for medium and high speed diesel engine bearing tribological applications, Tribology International, 93, 687–695, 2016.
  • 53. Gebretsadik, D. W., Hardell, J., and Prakash, B., Friction and wear characteristics of different Pb-free bearing materials in mixed and boundary lubrication regimes, Wear, 340–341, 63–72, 2015.
  • 54. Herdan, J. M., Lubricating oil additives and the environment - An overview, Lubrication Science, 9 (2), 161–172, 1997.
  • 55. Cetin, M. H. and Korkmaz, S., Investigation of the concentration rate and aggregation behaviour of nano-silver added colloidal suspensions on wear behaviour of metallic materials by using ANOVA method, Tribology International, 147, 106273, 2020.
  • 56. Li, H., Zhang, Y., Li, C., Zhou, Z., Nie, X., Chen, Y., Cao, H., Liu, B., Zhang, N., Said, Z., Debnath, S., Jamil, M., Ali, H. M., and Sharma, S., Extreme pressure and antiwear additives for lubricant: academic insights and perspectives, The International Journal Of Advanced Manufacturing Technology, 1–27, 2022.
  • 57. Soy, U., 1000 Soruda Malzeme Bilimi, 2. Ed., İstanbul, 62–63, 2017.
Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi-Cover
  • ISSN: 1300-1884
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1986
  • Yayıncı: Oğuzhan YILMAZ