Fındık kabukları ile farklı model boyaların gideriminin kinetik ve termodinamik incelenmesi

Bu çalışmada, tekstil endüstrisi atıksularının giderimi için Türkiye’ye katma değer sağlayacak pratik biryaklaşım hedeflenmiştir. Bu bağlamda, Türkiye’nin dünya üst sıralarında olduğu fındık üreticiliği göz önünealınarak alternatif bir kullanımı bulunmayan ve zararsız bir atık olan fındık kabuğu (FK), laboratuvarortamında hazırlanmış sentetik atık suların gideriminde değerlendirilmiştir. FTIR, SEM-EDS ve XRDanalizleri ile gerçekleştirilen karakterizasyon çalşmaları, FK’nin organik bağ yapısı, morfolojik yapısı veelementel içeriğini ortaya koymuştur. Daha sonra farklı tekstil model boyalarla hazırlanan çözeltilerin farklıişletme şartlarında FK ile giderimi incelenmiştir. Bu bağlamda; başlangıç pH’ı, başlangıç boyakonsantrasyonu, adsorbent konsantrasyonu, reaksiyon süresi ve sıcaklığın etkileri incelenmiştir. Kinetikanalizler, adsorpsiyonun sözde ikinci mertebe model ve partiküler arası difüzyonun kontrolündegerçekleştiğini göstermiştir. Denge çalışmaları, Langmuir izoterminin süreci daha iyi ifade ettiğinigöstermiştir. Termodinamik parametreler ise, sürecin endotermik olduğunu, kendiliğinden gerçekleştiğini veartan sıcaklıla artan bir affiniteye sahip olduğunu göstermiştir.

Kinetic and thermodynamic investigation of removal of different model dyes using hazelnut shells

In this study, a practical approach that provided a value-added to Turkey was aimed for the treatment of textile effluents. In this context, hazelnut shell (HS), as a harmless waste and without an alternative usage, was utilized in treatment of synthetically prepared wastewaters in laboratory given the position of Turkey in the world in terms of hazelnut produciton. FTIR, SEM-EDS, and XRD analyses showed organic bond structure, morphological and elementel propoerties of HS. Subsequently, removal of various reactive model dyes was investigated under different operating conditions such as initial pH, initial Reactive dye concentration, adsorbent concentration, reaction time, and temperature. Kinetic analyses showed that adsorption process was controlled by both pseudo second order and intra particuler diffusion models. Equilibrium studies showed that Langmuir isotherm stated the process better. Thermedynamic parameters showed that the process was endothermic, spontaneous, and had an affinity that increased by increasing temperature.

___

  • 1. Buyukada M., Removal of yellow f3r, di maria brilliant blue r and reactive brilliant red-3me from aqueous solutions by a rapid and efficient ultrasound–assisted process with a novel biosorbent of cottonseed cake: Statistical modeling, kinetic and thermodynamic studies, Arab. J. Sci. Eng., 40 (8), 2153–2168, 2015.
  • 2. Rafatullah M., Sulaiman O., Hashim R., Ahmad A., Adsorption of methylene blue on low-cost adsorbents: a review, J. Hazard. Mater. 177, 70–80, 2010.
  • 3. Srinivasan A., Viraraghavan T., Decolorization of dye wastewaters by biosorbents: a review, J. Environ. Manage., 91, 1915–1929, 2010.
  • 4. Buyukada M., Evrendilek F., Modeling Efficiency of Dehydrated Sunflower Seed Cake as a Novel Biosorbent to Remove a Toxic Azo Dye, Chem. Eng. Commun., 203 (6), 746–757, 2016.
  • 5. Buyukada M., Co-combustion of peanut hull and coal blends: Artificial neural networks, particle swarm optimization and Monte Carlo simulation, Bioresour. Technol., 216, 280–286, 2016.
  • 6. Gajic D., Savic-Gajic I., Savic I., Georgieva O., Gennaro S., Modelling of electrical energy consumption in an electric arc furnace using artificial neural networks, Energy, 108 (1), 132–139, 2016.
  • 7. Buyukada M., Probabilistic uncertainty analysis based on Monte Carlo simulation of co-combustion of hazelnut hull and coal belnds: Data-driven modeling and response surface optimization, Bioresour. Technol., 225, 106–112, 2017.
  • 8. Buyukada M., Modeling of decolorization of synthetic reactive dyestuff solutions with response surface methodology by a rapid and efficient process of ultrasound–assisted ozone oxidation, Des. Wat. Treat., 57 (32), 14973–14985, 2016.
  • 9. Kumar K.V., Porkodi K., Modelling the solid–liquid adsorption processes using artificial neural networks rained by pseudo second order kinetics, Chem. Eng. J., 148, 20–25, 2009.
  • 10. Yao Y.J., Xu F.F., Chen M., Xu Z.X., Zhu Z.W., Adsorption behavior of methylene blue on carbon nanotubes, Bioresour. Technol., 101, 3040–3046, 2010.
  • 11. Yang G., Wang B., Wang Z., Li X., Jia Q., Zhou Y., Biosorption of Acid Black 172 and Congo Red from aqueous solution by nonviable Penicillium YW 01: kinetic study, equilibrium isotherm and artificial neural network modeling, Bioresour. Technol., 102, 828–834, 2011.
  • 12. Wang P.F., Cao M.H., Wang C., Ao Y.H., Hou J., Qian J., Kinetics and thermodynamics of adsorption of methylene blue by a magnetic graphene-carbon nanotube composite, Appl. Surf. Sci., 290, 116–124, 2014.
  • 13. Khataee A.R., Kasiri M.B., Artificial neural networks modeling of contaminated water treatment processes by homogeneous and heterogeneous nanocatalysis, J. Mol. Catal. A-Chem., 331, 86–100, 2010.
  • 14. Mikulandric R., Loncar D., Böhning D., Böhme R., Beckmann M., Artificial neural network modelling approach for a biomass gasification process in fixed bed gasifiers, Energy Convers. Manage, 87, 1210–1223, 2014.
  • 15. Vani S., Sukumaran R.K., Savithri S., Prediction of sugar yields during hydrolysis of lignocellulosic biomass using artificial neural network modeling, Bioresour. Technol., 188, 128–135, 2015.
  • 16. Chiou M.S., Li H.Y., Equilibrium and kinetic modeling of adsorption of reactive dye on cross-linked chitosan beads, J. Hazard. Mater., 93, 233–248, 2002.
  • 17. Dutta S., Optimization of Reactive Black 5 removal by adsorption process using Box-Behnken design. Des. Water Treat., 51, 40–42, 2013.
  • 18. Jumasiah A., Chuah T.G., Gimbon J., Choong T.S.Y., Azni I., Adsorption of basic dye onto palm kernel shell activated carbon: sorption equilibrium and kinetics studies, Desalination, 186, 57–64, 2005.
  • 19. Al-Ghouti M., Khraisheh, M.A.M., Ahmad M.N.M., Allen S., Thermodynamic behaviour and the effect of temperature on the removal of dyes from aqueous solution using modified diatomite: a kinetic study, J. Colloid. Interf. Sci., 287, 6–13, 2005.
  • 20. Gong R.M., Ding Y., Lie M., Yang C., Liu H.J., Sun Y.Z., Utilization of powdered peanut hull as biosorbent for removal of anionic dyes from aqueous solution, Dyes Pigments, 64, 187–192, 2005.
  • 21. Arami M., Limaee N.Y., Mahmoodi NM. Tabrizi NS., Equilibrium and kinetics studies for the adsorption of direct and acid dyes from aqueous solution by sol meal hull, J. Hazard. Mater., 135, 171–179, 2006.
  • 22. Hashemian S., Misrhamsi M., Kinetic and thermodynamic of adsorption of 2–picoline by sawdust from aqueous solution, J. Ind. Eng. Chem., 18, 2010– 2015, 2012.
  • 23. Hanafiah M.A.K.M., Ngah W.S.W., Zolkafly S.H., Teong J.C., Majid Z.A.A., Acid Blue 25 adsorption on base treated Shorea dasyphylla sawdust: Kinetic, isotherm, thermodynamic and spectroscopic analysis, J. Environ. Sci., 24 (2), 261–268, 2012.
  • 24. Mittal A., Adsorption kinetics of removal of a toxic dye, Malachite Green, from wastewater by using hen feathers, J. Hazard. Mater., 133, 196–202, 2006.
  • 25. Wu C.H., Yu C.H., Effects of TiO2 dosage, pH and temperature on decolorization of C.I. Reactive Red 2 in a UV/US/TiO2 system, J. Hazard. Mater., 169, 1179– 1183, 2009.
Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi-Cover
  • ISSN: 1300-1884
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1986
  • Yayıncı: Oğuzhan YILMAZ