Fethiye yerleşim alanındaki zeminlerin spt ve kayma dalga hızı verileriyle sıvılaşma potansiyelinin değerlendirilmesi

Türkiye deprem kuşağında yer alan ve deprem geçmişi olarak aktif bir tarihe sahip olan ülkedir. Sıvılaşma ülkemizde 1992 Erzincan depreminden sonra önemli hale gelmiş ve daha sonra 1999 Marmara ve Düzce depremlerinde de geniş olarak gözlenmiştir. Bu çalışma kapsamında Muğla ili, Fethiye ilçesi inceleme alanında senaryo bir deprem büyüklüğüne göre sıvılaşma potansiyelinin belirlenmesi amacıyla bölgede 40 ayrı noktada Standart Penetrasyon Deneyi (SPT) ve sismik kırılma deneyleri yapılmıştır. SPT ve sismik kırılma deneyleri çakışacak şekilde aynı noktalarda yapılması amaçlanmış ve böylece sonuçlar aynı noktada iki ayrı farklı yöntemle elde edilerek karşılaştırılmıştır. İnceleme alanında SPT darbe sayıları, yeraltı su seviyesi, ince dane oranı ve kayma dalgası hızı verilerine göre sıvılaşma analizi yapılarak sıvılaşma risk indeksine göre sıvılaşma risk haritaları hazırlanmıştır. Yapılan çalışmalar sonucunda Mw=7,0 büyüklüğünde senaryo bir deprem durumunda inceleme alanının büyük bir bölgesinde sıvılaşmanın olmayacağı veya düşük seviyede sıvılaşma olabileceği sonucuna varılmıştır.

Assessment of liquefaction potential of fethiye based on spt and shear wave velocity

Turkey, located at an area of active seismic zone, has vast records of many earthquakes. The liquefaction phenomena have become crucial issue in Turkey since Erzincan Earthquake took place in 1992. Soil liquefaction was observed widely during Marmara and Duzce Earthquakes in 1999 as well. In this study, the liquefaction potential of vicinity of Fethiye village in Turkey was investigated via results of blow counts (N) of Standard Penetration Test (SPT) and velocity measurements of seismic refraction tests at 40 different locations in the investigated area under an earthquake magnitude (Mw) of 7.0. Liquefaction severity maps were prepared according to liquefaction severity index that is function of the input parameters such as SPT-N values, ground water level, fines content and shear wave velocity. The results of study reveal that the investigated area has either no potential liquefiable or low susceptibility liquefiable zones under Mw=7.0.

___

  • Youd T.L., Perkins D.M., Mapping liquefaction- induced ground failure potential, Journal of Geotech Eng Div., 104 (4), 443-446, 1978.
  • Kramer S.L., Mayfield R.T., Return period of soil liquefaction, Geoenvironmental Eng., 133 (7), 802-813, 2007.
  • Kramer S.L., Geotechnical earthquake engineering, Prentice-Hall Civil Engineering and Engineering Mechanics, 1996.
  • Ishihara K., Soil behaviour in earthquake geotechnics, The Oxford Engineering Science Series, Oxford, 1996.
  • Liu H., Qiao T., Liquefaction potential of saturated sand deposits underlying foundation of structure, Proceeding of 8th World Conference on Earthquake Engineering, San Francisco, 3, 199-206, 1984.
  • Elgamal A.W., Dobry R., Adalıer K., Small-scale Shaking Table Tests of Sturated Layered Sand-Silt Deposits, 2nd U.S-Japan Workshop on Soil Liquefaction, Buffalo, N.Y., NCEER Rep. No. 890032,233-245, 1989
  • Lambe P.C., Dynamic Centrifuge Modelling of a Horizontal Sand Stratum, Sc.D Thesis, Dept. Of Civil Engineering, Mass. Inst. Technology, Cambridge, Mass. USA, 1981.
  • Husmand B., Scott F., Crouse C.B., Centrifuge Liquefaction Tests in a Laminar Box, Geotechnique, 38 (2), 253-262, 1988.
  • Seed H.B., Idriss I.M., Simplified procedure for evaluating soil liquefaction potential,. Journal of Soil Mech. Foundation Div., ASCE, 97 (9), 1249-73, 1971.
  • Tokimatsu K., Yoshimi Y., Empirical correlation of soil liquefaction based on SPT N-value and fines content, Soils and Foundations, 23 (4), 56-74, 1983.
  • Iwasaki T., Tokida K., Tatsuoka F., Soil liquefaction potential evaluation with use of the simplified procedure, International Advances in Geotechnical Earthquake Engineering and Soil Dynamics, St. Louis, 209-214, 1981.
  • Suzuki Y., Koyamada K., Tokimatsu K., Prediction of liquefaction resistance based on CPT tip resistance and sleeve Conference of Soil Mechanics and Foundation Engineering, Hamburg, Germany, 603-606, 1997.
  • Stokoe K.H., Roesset J.M., Bierschwale J.G., Aouad M., Liquefaction Potential of Sands from Shear wave Velocity, Proceedings of Ninth World Conference on Earthquake Engineering, Tokyo, Japan, 3, 213-218, 1988.
  • Andrus R.D., Stokoe II KH., Liquefaction resistance of soils from shear wave velocity, Journal of Geotechnical and Geoenvironmental Eng., 126 (11), 1015-25, 2000.
  • Sönmez H., Modification to the liquefaction potential index and liquefaction susceptibility mapping for a liquefaction-prone area (Inegol-Turkey), Environmental Geology, 44 (7), 862-871, 2003.
  • Sönmez H., Gökçeoğlu C., A liquefaction severity index suggested for engineering practice, Environmental Geology, 48, 81-91, 2005.
  • Şenel M., Fethiye L8 Paftası, Maden Tetkik ve Arama Gen. Müd. Jeoloji Etüt. Dai., L8 Paftası:1-21, 1997.
  • Tansuğ Z., Öztunalı A., Fethiye ve civarı hidrojeolojik etüd raporu, Devlet Su İşleri Genel Müdürlügü, 1-35, 1977.
  • Şengör A.M.C., Yılmaz Y., Tethyan evolution of Turkey: a plate tectonic approach, Tectonophysics, 75, 181-241, 1981.
  • Barka A., Reilinger R., Şaroğlu F., Sengör,A.M.C., The Isparta Angle: Its evolution and importance in the tectonics of the eastern Mediterranean region, Proceedings of International Earth Sci. Collog. Aegean Region, 3-17, 1995.
  • Maden Teknik Arama Genel Müdürlüğü, Türkiye Diri Fay Haritası, http://www.mta.gov.tr/mta_web/dirifay1.asp, 2006.
  • Yağmurlu F., Burdur fayının sismotektonik özellikleri, Batı Anadolu'nun Depremselliği Sempozyumu, İzmir, 143-151, 2000.
  • Reilinger R., Mc Clusky S., E. Mediterranean GPS Consortium, deformation in the eastern Mediterranean and Caucasus region, Geophysical Research Abstracts, 5, 2003.
  • Youd T.L., Idriss I.M., Andrus R.D., Arango I., Castro G., Christian J.T., Dobry R., Liam Finn W.D., Harder L.F.Jr., Hynes M.E., Ishihara K., Koester J.P., Laio S.S.C., Marcuson WF III., Martin G.R., Mitchell J.K., Moriwaki Y., Power M.S., Robertson P.K., Seed R.B., Stokoe K.H., Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils, Journal of Geotechnical and Geoenvironmental Eng., 127 (10), 817-833, 2001.
  • Çetin K.Ö., Seed R.B., Nonlinear Shear Mass Participation Factor, rd for Cyclic Shear Stress Ratio Evaluation, Soil Dynamics and Earthquake Engineering, 24, 103-113, 2004.
  • Seed H.B., Idriss I.M., Arango I., Evaluation of liquefaction potential using field performance data, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 109 (3), 458-482, 1983.
  • Seed R.B., Harder L.F., SPT-based analysis of cyclic pore pressure generation and undrained residual strength, H. Bolton Seed Memorial Symposium, University of California, Berkeley, 2, 351-376, 1990.
  • Idriss I.M., Boulanger R.W., Semi-emprical procedures for evaluating liquefaction potential during earthquakes, Soil Dynamics and Earthquake Engineering, 26, 115-130, 2006.
  • Ulusay R., Tuncay E., Sonmez H., Gokceoglu C., An attenuation relationship based on Turkish strong motion data and iso-acceleration map of Turkey, Engineering Geology, 74, 265-291. 2004.
  • Liao S.S., Whitman R.V., Overburden correction factors for SPT in sand, Journal of Geotechnical Engineering, 112 (3), 373-377, 1986.
  • Youd T.L., Idriss I.M., Summary Report, Proc. of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, NCEER Report No 97-0022, 1997.
  • Skempton A.W., Standard penetration test procedures and the effects in sands of overburden pressure, relative density, particle size, aging and overconsolidation, Geotechnique, 36 (3), 425-447, 1986.
  • Idriss I.M., Presentation notes: An update of the Seed- Idriss simplified procedure for evaluating liquefaction potential, TRB Workshop on New Approaches to Liquefaction Anal., Publ. No FHWARD- 99-165, Federal Highway Administration, Washington, D.C., 1999.
  • Iwasaki T., Tokida K., Tatsuoka F., Watanabe S., Yasuda S., Sato H., Microzonation for soil liquefaction potential using simplified methods, Proceedings of the 3rd International Conference on Microzonation, Seattle, 3, 1319-1330, 1982.
  • Chen C.J., Juang C.H., Calibration of SPT- and CPT- based liquefaction evaluation methods, Innovations and Applications in Geotechnical Site Characterization, 97. Geotechnical Special Publication, ASCE, Reston, 49- 64, 2000.
  • Juang C.H., Yuan H., Lee D.H., Lin P.S., A simplified CPT-based method for evaluating liquefaction potential of Geoenvironmental Eng., 129 (1), 66-80, 2003. of Geotechnical and
Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi-Cover
  • ISSN: 1300-1884
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1986
  • Yayıncı: Oğuzhan YILMAZ