Arakritik sıcaklıklardan östemperlenmiş ferritik küresel grafitli dökme demirde yeni ferrit oluşumu

Bu çalışmada, ferritik küresel grafitli dökme demirlerde, arakritik sıcaklıklardan östemperleme sırasında oluşan mikroyapılar incelenmiştir. Bu amaçla ferritik küresel grafitli dökme demir, farklı arakritik sıcaklıklarda tavlanmış (kismi östenitlenmiş) ve ardından 365 °C’deki tuz banyosunda farklı sürelerde östemperlenmiştir. Farklı arakritik sıcaklıklardan östemperlemenin ardından, östemperleme süresine bağlı olarak östenitten dönüşüm ürünlerinin miktarlarındaki farklılık, mikroyapı değişim grafikleri ile kantitatif olarak gösterilmiştir. Metalografik ölçümler, özellikle belirli bir arakritik tavlama sıcaklığında oluşan orijinal östenitten östemperleme sırasında dönüşen fazların toplam hacim oranının yaklaşık olarak bütün östemperleme süreleri için orijinal östenitin hacim oranına eşit olduğunu göstermiştir. Arakritik tavlama sıcaklıklarından östemperlenmiş numunelerin her birinde ötektoid öncesi ferrit ve beynitik ferrite ilaveten yeni ferrit (epitaksiyel ferrit) açığa çıkmıştır. Artan arakritik sıcaklığı ile yeni ferrit hacim oranıda artmıştır. Ancak, yeni ferritin arakritik östenitleme sıcaklığındaki orijinal östenitten dönüşüm yüzdesi, azalan arakritik östenitleme sıcaklığı ile artmıştır. Östemperleme süresindeki artış yeni ferrit, beynitik ferrit ve yüksek karbonlu östenitin martensitle yer değişimine neden olmuştur. Numunelerin bazıları karşılaştırma amacıyla 900°C’ den geleneksel olarak östemperlenmiştir. Geleneksel östemperlenmiş numunelerde yeni ferritin varlığına rastlanmamıştır.

The new ferrite formation in ferritic ductile iron austempered from intercritical temperature ranges

In the present study, during austempering, microstructure formations in the ferritic ductile irons austempered from intercritical temperature ranges have been investigated. For this purpose a ferritic ductile iron was intercritically austenitised (partially austenitised) at intercritical temperature ranges and then austempered in a salt bath held at austempering temperature of 365°C for various times. Following austempering from various intercritical annealing temperatures, microstructure variation graphics were created to illustrate the transformation of products quantitatively as a function of austempering time. Metallographic measurements showed that during austempering, the total volume fraction of the transformed phases from the original austenite formed at intercritical austenitization temperature is approximately equal to the volume fraction of original austenite for all austempering times. Within each of the austempered specimen from intercritical temperature ranges, in addition to proeutectoid and bainitic ferrite, the new ferrite (epitaxial ferrite) introduced into the structure. The new ferrite volume fraction increased with increasing intercritical austenitizing temperature but transforming percentage of new ferrite from the original austenite present at intercritical austenitizing temperature increased with decreasing intercritical austenitizing temperature. Increasing the austempering time causes new ferrite, bainitic ferrite and high C austenite to displace martensite. Some specimens were also conventionally austempered from 900°C for comparison. The new ferrite was absent in the conventionally austempered samples.

___

  • 1. Voigt, R.C., Eldoky, L.M. ve Chiou, H.S., “Fracture of ductile cast irons with dual matrix structure”, A.F.S. Transactions., Cilt 94, 645-656, 1986.
  • 2. Rashidi, A.M. ve Moshrefi-Torbati, M., “Effect of tempering conditions on the mechanical properties of ductile cast iron with dual matrix structure (DMS)”, Materials Letters, Cilt 45, 203-207, 2000.
  • 3. Cerah, M., Kocatepe, K., ve Erdogan, M., “Influence of martensite volume fraction and tempering time on tensile properties of partially austenitized in the ($alpha + gamma$) temperature range and quenched + tempered ferritic ductile iron”, Jounal of Materials Science , Cilt 40, 3453-3459, 2005.
  • 4. Aranzabal, J., Serramoglia, G. ve Rousiere D., “Development of a new mixed (ferriticausferritic) ductile iron for automotive suspension parts”, International Journal of Cast Metal Research, Cilt 16, 185-190, 2003.
  • 5. Kobayashi, T. ve Yamamoto, H., “Development of high toughness in austempered type ductile cast iron and evaluation of its properties”, Metallurgical and Materials Transactions A, Cilt 19A, 319-327, 1988.
  • 6. Kobayashi, T. ve Yamada, S., “Effect of holding time in the ($alpha + gamma$) temperature range on toughness of specially austempered ductile iron”, Metallurgical and Materials Transactions A, Cilt 27A, 1961-1971, 1996.
  • 7. He, Z.R., Lin, G.X. ve Ji, S., “Deformation and fracture behaviour of cast iron with optimized microstructure”, Materials Characterization, Cilt 38, 251-258, 1997.
  • 8. Hafiz, M., “Tensile properties and fracture of ferritic SG-iron having different-shell structure”, Zeitschrift fur Metallkunde, Cilt 11, 1258-1261, 2001.
  • 9. Kocatepe, K., Cerah, M. ve Erdogan, M., “The tensile fracture behaviour of intercritically annealed and quenched + tempered ferritic ductile iron with dual matrix structure”, Materials and Design, Cilt 28, 172-181, 2007.
  • 10. Erdogan, M., Cerah, M., ve Kocatepe, K., “Influence of Intercritical Austenitizing, Tempering Time and Martensite Volume Fraction on The Tensile Properties of Ferritic Ductile Iron with Dual Matrix Structure”, International Journal of Cast Metal Research, Cilt 19, 248-253, 2005.
  • 11. Kocatepe, K. Cerah, M. ve Erdogan, M., “Effect of martensite volume fraction and its morphology on the tensile properties of ferritic ductile iron with dual matrix structures ”, Journal of Materials Processing Techonology, Cilt 178,44-51, 2006.
  • 12. Erdogan, M., Kilicli, V. ve Demir, B., “Transformation characteristics of ductile iron austempered from intercritical austenıitizing temperature ranges”, Journal of Materials Science, In Press, 2007.
  • 13. Kilicli, V. ve Erdogan, M., “Tensile properties of partially austenitised and austempered ductile irons with dual matrix structures”, Materials Science and Technology, Cilt 22, 919-928, 2006.
  • 14. Elliot, R., “Cast Iron Technology”, Butterworths&Co., London, 1988.
  • 15. Vander Voort, G.F., “Metallography:Principle and Practice”, McGraw-Hill, New York, 1984.
  • 16. Gifkins, R.C., “Optical Microscopy of Metals”, Pitman, London, 1970.
  • 17. Cullity, B.D., “Elements of X-Ray Diffraction”, Addison-Wesley, USA, 1974.
  • 18. Roberts, C.S., “Effect of carbon on the lattice parameter of austenite”, Transactions A.I.M.E., Cilt 197, 203-204, 1953.
  • 19. Kovacs, B.V., “ On the terminology and structure of ADI”, A.F.S. Transactions, Cilt 102, 417-20, 1994.
  • 20. Janowak, J.F. ve Gundlach, R.B., “Development of a ductile iron for commercial austempering”, A.F.S. Transactions, Cilt 91, 377-388, 1983.
  • 21. Moore, D.J., Rouns, T.N. ve Rundman, K.B., “Effect of manganese on scructure and properties of austempered ductile iron: A process windowconcept”, A.F.S. Transactions, Cilt 94, 255-264, 1986.
  • 22. Moore, D.J., Rouns, T.N. ve Rundman, K.B., “The relationship between microstructure and tensile properties in austempered ductile irons”, A.F.S. Transactions, Cilt 95, 765-774, 1987.
  • 23. Elliot, R., “Cast Irons”, Materials Science and Technology, Cilt 7, Editör: Pickering F. B., Constitution and Properties of Steels, Weinheim, 692, 1992.
  • 24. Darwish, N. ve Elliot, R., “Austempering of low manganese ductile irons Part 1 Processing window”, Materials Science and Technology, Cilt 9, 572-585, 1993.
  • 25. Darwish, N. ve Elliot, R., “Austempering of low manganese ductile irons Part 3 Variation of mechanical properties with heat treatment conditions”, Materials Science and Technology, Cilt 9, 882-889, 1993.
  • 26. Ali, A.S.H., Uzlov, K.I., Darwish, N. ve Elliot, R., “Austempering of low manganese ductile irons Part 4 Relationship between mechanical properties and microstructure”, Materials Science and Technology, Cilt 10, 34-40, 1994.
  • 27. Yescas, M.A., Bhadeshia, H.K.D.H. ve MacKay, D.J., “Estimation of the amount of retained austenite in austempered ductile irons using neural networks ”, Materials Science and Engineering A, Cilt A311, 162-173, 2001.
  • 28. Yescas, M.A., Bhadeshia, H.K.D.H., “Model for the maximum fraction of retained austenite in austempered ductile cast iron”, Materials Science and Engineering A, Cilt A333, 60-66, 2002.
  • 29. Bahmani, M., Elliot, R. ve Varahram, N., “The relationship between fatigue strength and microstructure in austempered Cu-Ni-Mn-Mo alloyed ductile iron”, Journal of Materials Science, Cilt 32, 4783-4791, 1997.
  • 30. Yazdani, S. ve Elliot, R., “Influence of molybdenum on austempering behavior of ductile iron, Part 3 Austempering kinetics, mechanical properties and hardenability of ductile iron containing 0.25 % Mo”, Materials Science and Technology, Cilt 15, 885-895, 1999.
  • 31. Yazdani, S. ve Elliot, R., “Influence of molybdenum on austempering behavior of ductile iron, Part 4 Austempering behaviour of ductile iron containing 0.45 % Mo”, Materials Science and Technology, Cilt 15, 896-902, 1999.
  • 32. Grech, M. ve Young, J.M., “Effect of austenitizing temperature on tensile properties of Cu-Ni austempered ductile iron”, Materials Science and Technology, Cilt 6, 415-421 (1990).
  • 33. Bayati, H., Elliot, R. and Lorimer, G.W., “Influence of austenitizing temperature on austempering kinetics of high manganese alloyed ductile cast iron.”, Materials Science and Technology, Cilt 11, 776-786, 1995.
  • 34. Bayati, H., Elliot, R. ve Lorimer G.W., “Stepped heat treatment for austempering of high manganese alloyed ductile iron ”, Materials Science and Technology, Cilt 11, 1007-1013, 1995.
  • 35. Bayati, H. ve Elliot, R., “Influence of austenitizing temperature on mechanicalproperties of high manganese alloyed ductile iron ”, Materials Science and Technology, Cilt 11, 908-913, 1995.
  • 36. Bayati, H. ve Elliot, R., “Austempering of low manganese ductile irons Part 3 Variation of mechanical properties with heat treatment conditions”, Materials Science and Technology, Cilt 11, 284-293, 1995.
  • 37. Nazarboland, A. ve Elliot, R., “Influence of heat treatment parameters on stepped asutempering of 0.37 % Mn-Mo-Cu ductile iron”, Materials Science and Technology, Cilt 13, 223-232, 1997.
  • 38. Bayati, H. ve Elliot, R., “Stepped austempering heat treatment of a 0-67%Mn-Mo-Cu ductile iron ”, Materials Science and Technology, Cilt 13, 117-124, 1997.
  • 39. Ali, A.S.H., ve Elliot, R., “Influence of austenitizing temperature on austempering of an Mn-Mo-Cu alloyed ductile iron, Part 2 Mechanical properties”, Materials Science and Technology, Cilt 13, 24-30, 1997.
  • 40. Yazdani, S. ve Elliot, R., “Influence of molybdenum on austempering behaviour of ductile iron Part 1- Austempering kinetics and mechanical properties of ductile iron containing 0.13 % Mo”, Materials Science and Technology, Cilt 15, 531-540, 1999.
  • 41. Yazdani, S. ve Elliot, R., “Influence of molybdenum on austempering behaviour of ductile iron Part 2- Influence of austenitizing temperature on austempering kinetics, mechanical properties and hardenability of ductile iron 0.13% Mo”, Materials Science and Technology, Cilt 15, 541-546, 1999.
  • 42. Geib, M.D., Matlock, D.K. Ve Krauss, G., “Effect of Intercritical Annealing Temperature on the Structure of Niobium Microalloyed Dual-Phase Steel”, Metallurgical Transactions A, Cilt 11A, 1683-1689, 1980.
  • 43. Erdogan, M., “The effect of new ferrite content on the tensile fracture behaviour of dual phase steels”, Journal of Materials Science, Cilt 37, 3623-3630, 2002.
  • 44. Erdogan, M. ve Priestner, R., “Effect of epitaxial ferrite on yielding and plastic flow in dual phase steel in tension and compression”, Materials Science and Technology, Cilt 15, 1273-1284, 1999.
  • 45. Erdogan, M. ve Priestner, R., “Effect of martensite content, its dispersion, and epitaxial ferrite content on Bauschinger behaviour of dual phase steel”, Materials Science and Technology, Cilt 18, 369-376, 2002.
  • 46. Erdogan, M., “Effect of austenite dispersion on phase transformation in dual phase steel”, Scripta Materialia, Cilt 48, 501-506, 2003.
  • 47. Rundman, K.B. ve Klug, R.C., “An X-ray and Metallographic Study of an Austempered Ductile Cast Iron”, A.F.S. Transactions, Cilt 90, 499- 508, 1982.
  • 48. Moore, D.J., Rouns, T.N. ve Rundman, K.B., “On the structure and properties of austempered ductile iron”, A.F.S. Transactions, Cilt 103, 705- 716, 1985.
  • 49. Hayrynen, K.L., Moore, D.J. ve Rundman, K.B., “Tensile properties and microstructure of a clean austempered ductile iron”, A.F.S. Transactions, Cilt 127, 471-486, 1990.
  • 50. Sarwar, M. ve Priestner, R., “Influence of ferritemartensite microstructural morphology on tensile properties of dual-phase steel”, Journal of Materials Science, Cilt 31, 2091-2095, 1996.