Taşıma gücü bağıntısında kullanılan şekil, derinlik ve N katsayılarının karşılaştırılması

Bu çalışmada, sığ temellerin taşıma gücünün hesaplanmasında kullanılan genel taşıma gücü bağıntısındaki şekil, derinlik ve N katsayıları için literatürde genel kabul görmüş farklı bağıntılar kullanılarak c=20 kPa’dan 200 kPa’ya ve =0°’den 40°’ye kadar değişen farklı zemin koşulları için emniyetli taşıma gücü değerleri hesaplanmış ve sonuçları birbiriyle karşılaştırılmıştır. Taşıma gücü hesaplamalarında, radye temel üzerine oturan konut tipi bir bina dikkate alınmış olup, yapıdan temele gelen kolon yüklerinin temelin merkezine ve temele dik, zemin yüzeyinin ve temel tabanının düz olduğu kabul edilmiştir. Hesaplamalarda statik yükleme koşullarının geçerli olduğu kabul edilmiş olup deprem etkisi ve moment etkileri dikkate alınmamıştır. Elde edilen sonuçlara göre; =0° analizlerinde, en düşük (en emniyetli) taşıma gücü değerlerinin Meyerhof [9]’un şekil ve derinlik katsayıları, en yüksek taşıma gücü değerlerinin ise De Beer [12]’in şekil katsayıları ve Hansen [11]’ın derinlik katsayıları kullanılarak elde edilmiştir. “c-” analizlerinde ise; yaklaşık 20° olan zeminlerde ise en düşük (en emniyetli) taşıma gücü değerleri, şekil katsayıları için De Beer [12]’in sin’li bağıntıları, derinlik katsayılarından dc için Vesić [14]’in, dq ve d için Hansen [11]’ın bağıntıları ve N katsayısı için TBDY-2018 [18]’de önerilen bağıntı kullanılarak elde edilmiştir.

Comparison of the shape, depth and N factors used in the bearing capacity equation

In this study, allowable bearing capacity values using different equations generally accepted in the literature for shape, depth and N factors in the general bearing capacity equation used in bearing capacity calculation of shallow foundations were calculated for different soil conditions varying from c=20 kPa to 200 kPa and from =0° to 40° and the results obtained were compared with each other. In the bearing capacity calculations, a residential type building resting on a mat foundation has been taken into account, and it has been assumed that the resultant of column loads from the building to the foundation are perpendicular to the foundation and at the center of the foundation, ground surface are level, and foundation base are horizontal. Earthquake and moment effects were not taken into account in the calculations, and static loading conditions were assumed to be valid. According to the results obtained; In the =0° analyses, the lowest (safest) bearing capacity values were obtained by Meyerhof [9]'s shape and depth factors, and the highest bearing capacity values were obtained by De Beer [12]’s shape and Hansen [11]’s depth factors. In the “c-” analyses, the lowest (safest) bearing capacity values for soils with approximately 20°, the lowest (safest) bearing capacity values were obtained using the shape factors with sin proposed by De Beer [12], dc factors suggested by Vesić [14] and dq and d factors proposed by Hansen [11] and N factor suggested in TBEC [18].

___

  • [1] Terzaghi, K., Theoretical Soil Mechanics, John Wiley & Sons, Inc., New York, USA, 1943.
  • [2] Prandtl, L., Über die Harte Plastischer Körper, Nachrichten von der Könighlichen Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-physikalischen Klasse, pp. 74–85, 1920.
  • [3] Reissner, H., Zum Erddruckproblem, In: Biezeno, C.B., Burgers, J.M. (Eds.) Proceedings of the 1st International Congress for Applied Mechanics, Delft, The Netherlands, pp. 295–311, 1924.
  • [4] Terzaghi, K., Peck, R.B., Soil Mechanics in Engineering Practice. 2nd edition. John Wiley and Sons, Inc. New York, USA, 1967.
  • [5] Skempton, A.W., The Bearing Capacity of Clays, Building Research Congress., vol. 1, pp 180-189, 1951.
  • [6] Meyerhof, G. G., The Ultimate Bearing Capacity of Foundations, Geotechnique, 2 (4): 301-332, 1951.
  • [7] Meyerhof, G. G., The Bearing Capacity of Foundations Under Eccentric and Inclined Loads. Proceedings of Third Int. Conf. Soil Mech., vol. 1: 440-445, 1953.
  • [8] Meyerhof, G. G., Discussion on “Rupture surfaces in sand under oblique loads.” Proc. Am. Soc. Civil Engrs., Journal of the Soil Mechanics and Foundations Division, 82 (3): 15-19, 1956.
  • [9] Meyerhof, G. G., Some Recent Research On the Bearing Capacity of Foundations, Canadian Geotechnical Journal, 1(1): 16–26, 1963.
  • [10] Hansen, J. B., A General Formula for Bearing Capacity, Bulletin No. 11, Danish Geotechnical Institute, Copenhagen, 1961.
  • [11] Hansen, J. B., A Revised and Extended Formula for Bearing Capacity, Bulletin No. 28, Danish Geotechnical Institute, Copenhagen, 1970.
  • [12] De Beer, E. E., Experimental Determination of the Shape Factors and Bearing Capacity Factors of Sand, Geotechnique, 20(4): 387–411, 1970.
  • [13] Vesić, A. S., Analysis of Ultimate Loads of Shallow Foundations, Journal of the Soil Mechanics and Foundations Division, American Society of Civil Engineers, 99(SM1): 45–73, 1973.
  • [14] Vesić, A. S., Bearing Capacity of Shallow Foundations. Foundation Engineering Handbook, 1st ed. pp.121-147. Winterkorn, Hans F. and Fang, Hsai-Yang, Eds., Van Nostrand Reinhold, New York. 751 pp, 1975.
  • [15] Das, B.M., Principles of Foundation Engineering, Seventh Edition, Cengage Learning, Stamford, USA, 2011.
  • [16] Das, B. M., Shallow Foundations Bearing Capacity and Settlement, Third Edition, CRC Press, Taylor & Francis Group, FL, USA, 2017.
  • [17] Das, B. M., Sivakugan, N., Principles of Foundation Engineering, Ninth Edition, Cengage Learning, Inc., Boston, USA, 2019.
  • [18] TBDY-2018. Türkiye Bina Deprem Yönetmeliği, 2018. İçişleri Bakanlığı, Afet ve Acil Durum Yönetimi Başkanlığı. Ankara, Türkiye, 2018.
  • [19] Baars, S.V., 100 Years of Prandtl’s Wedge. 135 p., IOS Press BV, Amsterdam, Netherlands, 2018.
  • [20] EC-7, Eurocode 7 - Geotechnical Design - Part 1: General Rules, European Standard, EN 1997-1: 2004, European Committee for Standardization, Brussels, 2004.
  • [21] Bowles, J.E., Foundation Analysis and Design, Fifty Edition, McGraw-Hill, USA, 1996.