Photoresponse of the Al/n-Si Schottky diode with nanorod ZnO interface layer prepared by hydrothermal method

Photoresponse of the Al/n-Si Schottky diode with nanorod ZnO interface layer prepared by hydrothermal method

In this study, ZnO nanorods (ZnO-NR) were prepared on n-Si wafer by hydrothermal method. Structural and morphologic properties of ZnO nanostructures were investigated through XRD and SEM method. The illumination impacts on the current-voltage (I-V) measurements of the prepared Al/ZnO-NR/n-Si diode were explored in the dark and different illumination intensities (20–100 mW/cm2) between ± 1.5 V bias voltage range. The Schottky diode barrier height value had an increasing trend with increasing illumination intensity from 20 to 100 mW/cm2 while the ideality factor had a decreasing trend with the increase of photocurrent. The temporary photocurrent increases as illumination intensity increases. The slope (α) of the logI_ph-logP curve was obtained as 0.618 and this slope confirmed that this ZnO nanorod shows photoconducting behavior. The short-circuit current (I_sc) and open-circuit voltage (V_oc) values were obtained to be 774.08 μA and 0.24 V under 100 mW/cm2 illumination intensity, respectively. It was concluded that the prepared Al/ZnO-NR/n-Si diode can be used in the optoelectronic applications, especially for the photodiode industry.

___

  • 1. N. Hamid, S. Suhaimi, M. Z. Othman, and W. Z. W. Ismail, Nano Hybrids Compos. 31, 55 (2021).
  • 2. L. Skowronski, A. Ciesielski, A. Olszewska, R. Szczesny, M. Naparty, M. Trzcinski, and A. Bukaluk, Materials (Basel). 13, 1 (2020).
  • 3. R. Müller, O. Gelme, J. P. Scholz, F. Huber, M. Mundszinger, Y. Li, M. Madel, A. Minkow, U. Kaiser, U. Herr, and K. Thonke, Cryst. Growth Des. 20, 6170 (2020).
  • 4. A. Naveed, U. Haq, A. Nadhman, I. Ullah, G. Mustafa, M. Yasinzai, and I. Khan, (2017).
  • 5. K. Cheng, G. Cheng, S. Wang, N. Li, S. Dai, X. Zhang, B. Zou, and Z. Du, New J. Phys. 9, (2007).
  • 6. F. Yi, Y. Huang, Z. Zhang, Q. Zhang, and Y. Zhang, Opt. Mater. (Amst). 35, 1532 (2013).
  • 7. Z. Shao and X. Li, Phys. E Low-Dimensional Syst. Nanostructures 77, 44 (2016).
  • 8. S. Sheikhi, M. Aliannezhadi, and F. Shariatmadar Tehrani, Eur. Phys. J. Plus 137, (2022).
  • 9. G. Maria, D. Mari, G. Mineo, G. Franz, S. Mirabella, E. Bruno, and V. Strano, 1 (2022).
  • 10. Z. H. Azmi, S. N. Mohd Aris, S. Abubakar, S. Sagadevan, R. Siburian, and S. Paiman, Coatings 12, (2022).
  • 11. A. Serrà, Y. Zhang, B. Sepúlveda, E. Gómez, J. Nogués, J. Michler, and L. Philippe, Appl. Catal. B Environ. 248, 129 (2019).
  • 12. Z. Hajijamali, A. Khayatian, and M. Almasi Kashi, J. Sol-Gel Sci. Technol. 95, 109 (2020).
  • 13. F. Liao, X. Han, Y. Zhang, C. Xu, and H. Chen, J. Mater. Sci. Mater. Electron. 28, 16855 (2017).
  • 14. Y. Wang, X. Li, N. Wang, X. Quan, and Y. Chen, Sep. Purif. Technol. 62, 727 (2008).
  • 15. V. F. Rivera, F. Auras, P. Motto, S. Stassi, G. Canavese, E. Celasco, T. Bein, B. Onida, and V. Cauda, Chem. - A Eur. J. 19, 14665 (2013).
  • 16. J. Kwon, S. Hong, H. Lee, J. Yeo, S. S. Lee, and S. H. Ko, Nanoscale Res. Lett. 8, 1 (2013).
  • 17. S. M. Saleh, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 211, 141 (2019).
  • 18. H. B. Bakrudeen, J. Tsibouklis, and B. S. R. Reddy, J. Nanoparticle Res. 15, (2013).
  • 19. Y. Zhang, M. K. Ram, E. K. Stefanakos, and D. Y. Goswami, J. Nanomater. 2012, (2012).
  • 20. E. H. Rhoderick and R. H. Williams, Metal-Semiconductor Contacts (Clarendon Press, Oxford, 1988).
  • 21. H. Iwai, S. M. Sze, Y. Taur, and H. Wong, MOSFETs (Wiley, New York, 2013).
  • 22. N. Kaplan, E. Taşcı, M. Emrullahoğlu, H. Gökce, N. Tuğluoğlu, and S. Eymur, J. Mater. Sci. Mater. Electron. 16738 (2021).
  • 23. M. F. Şahin, E. Taşcı, M. Emrullahoğlu, H. Gökce, N. Tuğluoğlu, and S. Eymur, Phys. B Condens. Matter 614, (2021).
  • 24. A. O. Tezcan, S. Eymur, E. Taşcı, M. Emrullahoğlu, and N. Tuğluoğlu, J. Mater. Sci. Mater. Electron. 32, 12513 (2021).
  • 25. A. Turut, A. Karabulut, K. Ejderha, and N. Biyikli, Mater. Sci. Semicond. Process. 39, 400 (2015).
  • 26. N. Tuğluoğlu, H. Koralay, K. B. Akgül, and Çavdar, Indian J. Phys. 90, 43 (2016).
  • 27. M. İlhan, M. M. Koç, B. Coşkun, M. Erkovan, and F. Yakuphanoğlu, J. Mater. Sci. Mater. Electron. 32, 2346 (2021).
  • 28. E. Özcan, B. Topaloǧlu Aksoy, E. Tanriverdi Eçik, A. Dere, A. Karabulut, F. Yakuphanoglu, and B. Çoşut, Inorg. Chem. Front. 7, 2920 (2020).
  • 29. B. Bouricha, R. Souissi, N. Bouguila, D. Jlidi, and A. Labidi, Mater. Res. Express 6, 116456 (2019).
  • 30. F. Yakuphanoglu and W. Aslam Farooq, Mater. Sci. Semicond. Process. 14, 207 (2011).