Hava Kaynaklı Bir Isı Pompası Modelinin Performans Parametrelerinin Deneysel Validasyonu

Evsel sıcak su ihtiyacının karşılanması ve bunun için kullanılan enerji, günümüzde enerji sektöründe önemli bir paya sahiptir. Bu ihtiyacı karşılamak için kullanılan sistemlerden bir tanesi olan hava destekli ısı pompaları çeşitli yenilenebilir enerji kaynaklarıyla da desteklenebilmektedir. Bu tarz hibrit sistemlerde, laboratuvar şartlarında testler oldukça zor olduğu için sistemlerin modellenmesi ve bu modelin doğrulanmasının yapılması son derece önemlidir. Bu çalışmada, evsel sıcak su ihtiyacını karşılamak amacıyla kullanılan hava kaynaklı ısı pompalarının deneysel doğrulaması için bir sistem kurulmuş ve sistemin doğrulanması için TRNSYS programında aynı sistem modellenmiştir. Geliştirilen model, yenilenebilir enerji kaynaklarıyla desteklenebilecek nitelikte olup, bu tarz çalışmalar için bir rehberdir. Çalışmada kullanılan ısı pompası kapasitesi 8 kW olup, deneysel testler 0°C ila 15°C arasındaki sıcaklıklar için yapılmıştır. Çalışmada evsel sıcak su, bir tank aracılığıyla devamlı surette ısıtılmış ve sıcaklığı 30°C’den 45°C’ye kadar yükseltilmiştir. Hava kaynaklı ısı pompaları için, en yüksek %3,5 ortalama sapma yüzdesiyle bir model geliştirilmiş ve deneysel verilerle doğrulanmıştır. Geliştirilen model, yenilenebilir enerji kaynaklarıyla da desteklenebilecek şekilde tasarlanmış olup, bu tarz hibrit modeller için bir kaynak çalışma niteliğindedir.

Experimental Validation of Performance Parameters of An Air Source Heat Pump Model

Meeting the DHW (domestic hot water) requirement and the energy used for DHW has an important share in the energy sector today. Air-source heat pumps, one of the systems used to meet this requirement, can also be supported by various renewable energy sources. In such hybrid systems, it is extremely important to model the system and validate this model, since the tests in laboratory conditions are quite difficult. In this study, a system was established for the experimental validation of air source heat pumps used to meet the domestic hot water demand, and the same system was modelled using TRNSYS software to validate the system. The developed model is capable of being supported by renewable energy sources and is a guide for such studies. The heat pump capacity used in the study is a 8 kW, and the experimental tests were carried out for temperatures between 0°C and 15°C. In this study, domestic hot water was continuously heated through a tank and its temperature was increased from 30°C to 45°C. For air source heat pumps, a model with the highest average percentage deviation of 3.5% was developed and validated with experimental data. The developed model is designed to be supported by renewable energy sources, and it is a source study for such hybrid models.

___

  • D. Zou, X. Ma, X. Liu, P. Zheng, B. Cai, ve J. Huang, “Experimental research of an air-source heat pump water heater using water- PCM for heat storage”, Appl. Energy, c. 206, sayı January, ss. 784–792, 2017, doi: 10.1016/j.apenergy.2017.08.209.
  • M. S. Buker ve S. B. Riffat, “Solar assisted heat pump systems for low temperature water heating applications : A systematic review”, Renew. Sustain. Energy Rev., c. 55, ss. 399–413, 2016, doi: 10.1016/j.rser.2015.10.157.
  • S. Poppi, N. Sommerfeldt, C. Bales, H. Madani, ve P. Lundqvist, “Techno-economic review of solar heat pump systems for residential heating applications”, Renew. Sustain. Energy Rev., c. 81, sayı July 2017, ss. 22–32, 2018, doi: 10.1016/j.rser.2017.07.041.
  • V. M. Karolis Janusevicius, Giedre Streckiene, Juozas Bielskus, “Validation of unglazed transpired solar collector assisted air source heat pump simulation model”, c. 95, ss. 167–174, 2016, doi: 10.1016/j.egypro.2016.09.039.
  • F. Ruiz-calvo, C. Montagud, ve A. Cazorla-mar, “Development and Experimental Validation of a TRNSYS Dynamic Tool for Design and Energy Optimization of Ground Source Heat Pump Systems”, 2017, doi: 10.3390/en10101510.
  • W. Huang, T. Zhang, J. Ji, ve N. Xu, “Numerical study and experimental validation of a direct-expansion solar-assisted heat pump for space heating under frosting conditions”, Energy Build., c. 185, ss. 224–238, Şub. 2019, doi: 10.1016/j.enbuild.2018.12.033.
  • A. Rasheed, W. H. Na, J. W. Lee, H. T. Kim, ve H. W. Lee, “Development and validation of air‐to‐water heat pump model for greenhouse heating”, Energies, c. 14, sayı 15, ss. 1–22, 2021, doi: 10.3390/en14154714.
  • A. Del Amo, A. Martínez-Gracia, A. A. Bayod-Rújula, ve M. Cañada, “Performance analysis and experimental validation of a solar-assisted heat pump fed by photovoltaic-thermal collectors”, Energy, c. 169, ss. 1214–1223, 2019, doi: 10.1016/j.energy.2018.12.117.
  • M. Dannemand, I. Sifnaios, Z. Tian, ve S. Furbo, “Simulation and optimization of a hybrid unglazed solar photovoltaic-thermal collector and heat pump system with two storage tanks”, Energy Convers. Manag., c. 206, sayı October 2019, s. 112429, 2020, doi: 10.1016/j.enconman.2019.112429.
  • S. Korichi, B. Bouchekima, N. Naili, ve M. Azzouzi, “Performance analysis of horizontal ground source heat pump for building cooling in arid Saharan climate: thermal-economic modeling and optimization on TRNSYS”, Renew. Energy Environ. Sustain., c. 6, s. 1, 2021, doi: 10.1051/rees/2020008.
  • I. Malenković, P. Pärisch, J. B. Sara Eicher, ve M. Hartl, “Definition of Main System Boundaries and Performance Figures for Reporting on SHP Systems”, IEA SHC Task 44 - Subtask B, sayı Aralık, ss. 1–26, 2012.
  • M. Y. Haller vd., “Dynamic whole system testing of combined renewable heating systems – The current state of the art”, Energy Build., c. 66, ss. 667–677, 2013, doi: 10.1016/j.enbuild.2013.07.052.
  • TESS, “TESSLibs 17 Component Libraries for the TRNSYS Simulation Environment”, 2014.
  • M. Çengel, Yunus A. Boles, Michael A. Kanoğlu, Thermodynamics_ an Engineering Approach. Ninth Edition.2019. 2019.