Geopolimerlerden Mekanokimyasal Aktivasyon ile Silisyum Karbür Tip Nano Parçacıkların Üretilebilirliğinin Araştırılması

Mekanokimyasal olarak 6, 12, 24, 48 saat süreyle aktive edilen ve M= (Na+ veya K+) olmak üzere, sodyum veya potasyum alkali metal içeren (M2O•Al2O3•4.5SiO2•12H2O+18C) geopolimer karbon kompozisyonlarının karbotermal reaksiyonu ile silisyum karbür (SiC) tip nanoparçacıklar elde edilmiştir. Aktivasyon süresi ve alkali şartlara bağlı olarak elde edilen SiC, faz analizi, parçacık boyutu ve şekli ve nanoyapı açısından XRD, rietveld arıtımı, SEM ve TEMSAD analizleri ile karakterize edilmiştir. Sonuçlar, sodyum geopolimerde mekanokimyasal aktivasyon süresinin artışı ile beraber 24 saate kadar SiC miktarının arttığını ve 48 saatte azaldığını, potasyum geopolimer durumunda ise süre artışına bağlı olarak genelde hızlı bir azalma olduğunu göstermiştir. Yüksek saflıkta SiC eldesi kritik 24 saat sodyum geopolimerde, ~% 98.4 oranında gerçekleşmiştir. Mikro yapı ise çoğunlukla kristalize olmuş, 50-200 nm çapında ve uzunlukları 2-10 µm arasında değişen nano fiber, geri kalanı ise küresel nano-parçacıklar ve çok az amorf camsı fazdan oluşmaktadır.

___

  • W. M. Kriven, Inorganic polysialates or Geopolymers, American Ceramic Society Bulletin, 89:4 (2010) 31-34.
  • J. G. S. Van Jaarsveld, J. S. J. Van Deventer, G. C. Lukey, The effect of composition and temperature on the properties of fly-ash and kaolinite based geopolymers, Chem. Eng. J., 89 (2002) 63–73.
  • S. A. Benal, J. L. Provis, V. Rose, R. Mejia de Gutierrez, Evolution of binder structure in sodium silicate-activated slag-metakaolin blends, Cement Concrete Comp., 33 (2011) 46–54.
  • S. Detphan, and P. Chindaprasirta, Preperation of fly ash and rice husk ash geopolymer, Int. J. Miner. Mat., Mater., 33 (2011) 46–54.
  • P. He, D. Jia, Interface evolution of the Cf/leucite composites derived from Cf/geopolymer composites, Ceram. Int., 39 (2013) 1203–1208.
  • S. S. Musil, G. P. Kutyla and W. M. Kriven, The effect of basalt chopped fiber reinforcement on the mechanical properties of potassium based geopolymer, Cer. Eng. and Sci. Proc., 33:10 (2012) 31-42.
  • E. Rill, D. Lowry and W. M. Kriven, Properties of basalt fiber reinforced geopolymer composites, in Strategic Materials and Computational Design, edited by Waltraud M. Kriven, Yanchun Zhou and Miladin Radovic. Cer. Eng. Sci. Proc., 31:10 (2010) 57-69.
  • N. Xie, J. L. Bell and W. M. Kriven, Fabrication of structural, leucite glass-ceramics from potassiumbased geopolymer precursors, J. Amer. Ceram. Soc., 93:9 (2010) 2644-2649.
  • J. L. Bell, P. E. Driemeyer, W. M. Kriven, Formation of ceramics from metakaolin-based geopolymers: Part I - Cs-based geopolymer, J. Amer. Ceram. Soc., 92:1 (2009) 1-8.
  • C. Kuenzel, L. M. Grover, L. Vandeperre, A. R. Boccaccini, C. R. Cheeseman, Production of nepheline/quartz ceramic from geopolymer mortars, J. Euro. Ceram. Soc., 33 (2013) 251-258.
  • Y. Yang, Z-M. Lin, J-T. Li, Synthesis of SiC by silicon and carbon combustion in air, J. Euro. Ceram. Soc,. 29 (2009) 175-180.
  • X-N. Shen, Y. Zheng, Y-Y. Zhan, G-H. Cai, Y-H. Xiao, Synthesis of porous sic and application in the CO oxidation reaction, Mater. Lett., 61 (2007) 4766-4768.
  • H. Ichikawa. and T. Ishikawa, Silicon carbide fibers (Organometallic pyrolysis), Comprehensive Composite Materials, 1 (2000) 107-145.
  • C. Bagci, G. P. Kutyla and W. M. Kriven, Production of in situ silicon nitride reinforced geopolymer composites, made by carbothermal reduction and nitridation, Presented at 38th Int. Conf. and Exposition of Advanced Ceramics and Ceramic Composites, held in Daytona Beach, Florida, Jan 26th -31st 2014.
  • C. Bagci, G. P. Kutyla and W. M. Kriven, In-situ carbothermal reduction / nitridation of geopolymer composites containing carbon nanoparticles, Cer. Eng. and Sci. Proc., 35:8 (2015) 15-28.
  • C. Bagci, G. P. Kutyla, K. C. Seymour and W. M. Kriven, Synthesis and characterization of silicon carbide powders converted from metakaolin-based geopolymers, J. Am. Ceram. Soc., 99:7 (2016) 2521-2530.
  • H. Gökmeşe, B. Bostan, Microstructural characterization and synthesis by mechanochemical method of nanoparticle Al2O3/B4C ceramic phase, Journal of The Faculty of Engineering and Architecture of Gazi University, 29:2 (2014) 289-297.
  • L. Lu, M. O. Lai, W. Liang, Magnesium nanocomposite via mechanochemical milling, Composites Science and Technology, 64 (2004) 2009–2014.
  • H. Gökmeşe, B. Bostan, M. Barış, Fabrication and characterization of nanoceramic particle Al2O3/B4C composite by mechanochemical approach, Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 47:3 (2017) 416-422.
  • S. Kumar, R. Kumar, Mechanical activation of fly ash: Effect on reaction, structure and properties of resulting geopolymer, Ceram. Int. 37 (2011) 533-541.
  • N. Marjanovic, M.Komljenovic, Z. Bascarevic, V. Nikoli, Improving reactivity of fly ash and properties of ensuing geopolymers, Const. and Build. Mater., 57 (2014) 151–162.
  • J. Temuujin, R. P. Williams, A. Van Riessen, Effect of mechanical activation of fly ash on the properties of geopolymer cured at ambient temperature, J. of Mater. Proc. Tech. 209 (2009) 5276– 5280.
  • Y. Lu, Y. Wang, Z. Pan, H. Shen and L. Wu, Preparation of Carbon-Silicon Carbide Composite Powders via a Mechanochemical Route, Ceram. Int., 39 (2013) 4421-4426.
  • P. Duxson, G. C. Lukey, and J. S. J. Van Deventer, Thermal evolution of metakaolin geopolymers: Part-1. – Physical Evolution, J. Non-Cryst. Solids, 352:52-54 (2006) 5541-5555.
  • J. Ding, C. Deng, W. Yuan, H. Zhu, X. Zhang, Novel synthesis and characterization of silicon carbide nanowires on graphite flakes, Ceram. Int., 40 (2014) 4001–4007.
  • A. Najafi, F. Golestani Fard, H. R. Rezaie, N. Ehsani, Synthesis and characterization of SiC nano powder with low residual carbon processed by sol–gel method, Powder Technology, 219 (2012) 202– 210.