IDENTIFICATION OF PARKINSON’S DISEASE BY AR MODELLING OF GAIT SIGNALS

Öz Parkinson's is a neurodegenerative disease that, as in the case of other neurodegenerative diseases, has disruptive effects on human mobility. In this study, gait markers were obtained by using sensors under the foot, giving an output proportional to the force. Normal gait markers were compared with those of Parkinson’s patients. Thus, individuals with Parkinson's were identified by comparing the impulse model of gait markers obtained from normal individuals with those of Parkinson's patients.

Kaynakça

[1] Beal, M.F., Lang, A.E., Ludolph, A.C., Neurodegenerative Diseases: Neurobiology, Pathogenesis and Therapeutics, Cambridge University Pres, . London, UK, 2005.

[2] Galimberti, D., Scarpini, E., Neurodegenerative Diseases: Clinical Aspects, Molecular Genetics and Biomarkers, Springer London, 2014.

[3] Yalcın S., Ozaras N., Gait Analysis, Avrupa Publications, Istanbul, 2001 (inTurkish).

[4] Whittle, M.W., Gait Analysis: An Introduction, Butterworth-Heinemann, Waltham, 2007.

[5] Gabel, M. , Gilad-Bachrach, R., Renshaw, E., Schuster, A. (2012), Full Body Gait Analysis with Kinect, Engineering in Medicine and Biology Society (EMBC), Annual International Conference of the IEEE, San Diego, CA

[6] Hausdorff, J.M., Mitchell, S.L., Firtion, R., Peng, C.K., Cudkowicz, M.E., Wei, J.Y., Goldberger. A.L. (1997). Altered fractal dynamics of gait: reduced stride-interval correlations with aging and Huntington's disease. J. Applied Physiology, 82, 262-269.

[7] Hausdorff, J.M., Lertratanakul, A., Cudkowicz, M.E., Peterson, A.L., Kaliton, D., Goldberger, A.L. (2000). Dynamic markers of altered gait rhythm in amyotrophic lateral sclerosis. J. Applied Physiology, 88, 2045-2053.

[8] Budzianowska, A, Honczarenko, K. (2008). Assessment of rest tremor in Parkinson’s disease, Polish J. Neurol. Neurosurg., 42, 12 -21 .

[9] Weiner, W.J., Shulman, L.M., Lang, A.E., Parkinson's Disease: A Complete Guide for Patients and Families, The Johns Hopkins University Pres, Baltimore, 2006.

[10] Pahwa, R., Lyons, K., Treatment Decisions in Parkinson's Disease, Oxford University Pres, Northants, 2010.

[11] Watanabe, K., Hokari, M. (2006). Kinematical analysis and measurement of sports form, IEEE Trans. Syst. Man Cybern. Part A, 36, 549–557.

[12] Kimmeskamp, S., Hennig, E.M. (2001). Heel to toe motion characteristics in Parkinson patients during free walking. Clin. Biomech. ;16, 806–812.

[13] Walter, E., Pronzato, E., Identijication of Parametric Models from experimental data, Springer, Londra, 1997.

[14] Tsuruoka, M., Tsuruoka, Y., Shibasaki, R., Yasuoka, Y., Murai, S. (2004). Analysis of impulse response on walking stability using accelerometers, Engineering in Medicine and Biology Society, 2, 4924 – 4927 .

[15] Akgun, O., Demir, H., Akan, A, (2008). Detection of ALS Disease Using AR Models of Gait Dynamics, Electrical, Electronic and Computer Engineering Symposium (ELECO), Bursa Turkey.

[16] Tsuruoka, M., Tsuruoka, Y., Shibasaki, R., Yasuoka, Y., Murai, S, (2001). Analysis of impulse response on walking stability by a synchronized system of two accelerometers. Computer-Based Medical Systems,. 348 – 353.

[17] Tsuruoka, M., Tsuruoka, Y., Shibasaki, R., Yasuoka, Y., Murai, S. (1999). Spectral analysis of human movement stability using time series data in medicine. Computer-Based Medical Systems, 190 – 195.

Kaynak Göster

Bibtex @araştırma makalesi { ejt681232, journal = {European Journal of Technique (EJT)}, issn = {2536-5010}, eissn = {2536-5134}, address = {INESEG Yayıncılık Dicle Üniversitesi Teknokent, Sur/Diyarbakır}, publisher = {Hibetullah KILIÇ}, year = {2020}, volume = {10}, pages = {153 - 159}, doi = {10.36222/ejt.681232}, title = {IDENTIFICATION OF PARKINSON’S DISEASE BY AR MODELLING OF GAIT SIGNALS}, key = {cite}, author = {Akgün, Ömer and Akan, Aydın} }
APA Akgün, Ö , Akan, A . (2020). IDENTIFICATION OF PARKINSON’S DISEASE BY AR MODELLING OF GAIT SIGNALS . European Journal of Technique (EJT) , 10 (1) , 153-159 . DOI: 10.36222/ejt.681232
MLA Akgün, Ö , Akan, A . "IDENTIFICATION OF PARKINSON’S DISEASE BY AR MODELLING OF GAIT SIGNALS" . European Journal of Technique (EJT) 10 (2020 ): 153-159 <https://dergipark.org.tr/tr/pub/ejt/issue/54746/681232>
Chicago Akgün, Ö , Akan, A . "IDENTIFICATION OF PARKINSON’S DISEASE BY AR MODELLING OF GAIT SIGNALS". European Journal of Technique (EJT) 10 (2020 ): 153-159
RIS TY - JOUR T1 - IDENTIFICATION OF PARKINSON’S DISEASE BY AR MODELLING OF GAIT SIGNALS AU - Ömer Akgün , Aydın Akan Y1 - 2020 PY - 2020 N1 - doi: 10.36222/ejt.681232 DO - 10.36222/ejt.681232 T2 - European Journal of Technique (EJT) JF - Journal JO - JOR SP - 153 EP - 159 VL - 10 IS - 1 SN - 2536-5010-2536-5134 M3 - doi: 10.36222/ejt.681232 UR - https://doi.org/10.36222/ejt.681232 Y2 - 2020 ER -
EndNote %0 European Journal of Technique IDENTIFICATION OF PARKINSON’S DISEASE BY AR MODELLING OF GAIT SIGNALS %A Ömer Akgün , Aydın Akan %T IDENTIFICATION OF PARKINSON’S DISEASE BY AR MODELLING OF GAIT SIGNALS %D 2020 %J European Journal of Technique (EJT) %P 2536-5010-2536-5134 %V 10 %N 1 %R doi: 10.36222/ejt.681232 %U 10.36222/ejt.681232
ISNAD Akgün, Ömer , Akan, Aydın . "IDENTIFICATION OF PARKINSON’S DISEASE BY AR MODELLING OF GAIT SIGNALS". European Journal of Technique (EJT) 10 / 1 (Haziran 2020): 153-159 . https://doi.org/10.36222/ejt.681232
AMA Akgün Ö , Akan A . IDENTIFICATION OF PARKINSON’S DISEASE BY AR MODELLING OF GAIT SIGNALS. EJT. 2020; 10(1): 153-159.
Vancouver Akgün Ö , Akan A . IDENTIFICATION OF PARKINSON’S DISEASE BY AR MODELLING OF GAIT SIGNALS. European Journal of Technique (EJT). 2020; 10(1): 153-159.
IEEE Ö. Akgün ve A. Akan , "IDENTIFICATION OF PARKINSON’S DISEASE BY AR MODELLING OF GAIT SIGNALS", European Journal of Technique (EJT), c. 10, sayı. 1, ss. 153-159, Haz. 2020, doi:10.36222/ejt.681232