EXPERIMENTAL DETERMINATION OF THE MECHANICAL PROPERTIES OF COMPOSITE MATERIALS PRODUCED WITH PARTICLE REINFORCED ADHESIVES

 The composite adhesives which are produced by adding particles into the structural adhesives used in aviation field as well as the latest developments in nanotechnology have given a new perspective to the design of adhesively bonded joints. In this study, the mechanical aspects of fibre glass composite materials produced with method hand lay-up by adding powder of composite material into adhesives were examined with an experimental manner under tensile load. Polyester was used as the structural adhesives; powder of fibre glass composite materials was used as additive materials at 1% or 2% by weight, and the samples of tensile were produced. The results of the experiment showed that tensile failure load was increased in the fibre glass composite material bonded with particle-reinforced adhesive. In addition, the study examined the force-displacement curves and found that the joints with nanoparticle-added adhesive had an increased displacement capacity.

___

  • [1] Okkalıoğlu, M., Pekbey, Y., Aktaş, A. Yapıştırıcı ile Birleştirilmiş L Tipi Kompozit Köşe Bağlantılarında Çekme Dayanımının Artırılması, Mühendis ve Makina, (2014), 55(649), 50-57.
  • [2] Türkmen, İ., Köksal, N.S. Cam Elyaf Takviyeli Polyester Matrisli Kompozit Malzemelerde (CTP) Elyaf Tabaka Sayısına Bağlı Mekanik Özelliklerin ve Darbe Dayanımının İncelenmesi,” C.B.Ü. Fen Bil. Dergisi, (2013), 17-30.
  • [3] Uygur, İ. Saruhan, H. Aluminyum Esaslı Metal Matris Kompozit Malzemelerin Mekanik Özellikleri, SAU Fen Bilimleri Enstitüsü Dergisi, 8, (2004), 167-174.
  • [4] Çiftci, A. Tekstil Boyama ve Baskısında Kullanılan Yardımcı Maddeler, Sümer Yayın, Bursa, 2-5, (1996).
  • [5] Genç, M.S. Yapıştırıcı ile Birleştirilmiş Tek Yönlü Tabakalı Kompozit Tek Bindirme Bağlantılarında Hasar Oluşumu ve Gelişimi, Yüksek Lisans Tezi, Erciyes Üniversitesi, Kayseri, (2005).
  • [6] Beylergil, B. Yapıştırılarak Bağlantı Sağlanan Kompozit Plakaların Bağlantı Performansının Artırılması,” Yüksek Lisans Tezi, Niğde Üniversitesi, Niğde, (2010).
  • [7] Adin, H. Yapıştırıcı Malzeme İle Birleştirilmiş Ters Z Tipi Bağlantıların Mekanik Etkisi Bindirme, Doktora Tezi, (2007), Fırat Üniversitesi, Elaziğ, Turkiye
  • [8] Ganesh, V.V., Chawla, N. Effect of Particle Orientation Anisotropy on the Tensile Behavior of Metal Matrix Composites: Experiments and Microstructure-based Simulation, Materials Science and Engineering A, (2005), 391, 342–353.
  • [9] Min, S. Effects of Volume Fraction of SiC Particles on Mechanical Properties of SiC/Al Composites, Transactions of Nonferrous Metals Society of China, 19, (2009), 1400-1404.
  • [10] Slipenyuk, A., Kuprin, V., Milman, Y, Spowart, J.E., Miracle, D.B. The Effect of Matrix to Reinforcement Particle Size Ratio (PSR) on the Microstructure and Mechanical Properties of a P/M Processed AlCuMn/SiCp MMC, Materials Science and Engineering A, (2004), 381, 165–170.
  • [11] Liu, Z.Y., Wang, Q.Z., Xiao, B.L., Ma, Z.Y., Liu, Y. Experimental and Modeling Investigation on SiCp Distribution in Powder Metallurgy Processed SiCp/2024 Al Composites, Materials Science and Engineering A, (2010), 527, 5582–5591.
  • [12] Milan, M.T., Bowen, P. Tensile and Fracture Toughness Properties of SiCp Reinforced Al Alloys: Effects of Particle Size, Particle Volume Fraction, and Matrix Strength, Journal of Materials Engineering and Performance, (2004), 13, 775-783.
  • [13] Hall, J.N., Jones, J.W., Sachdev, A.K. Particle Size, Volume Fraction and Matrix Strength Effects on Fatigue Behavior and Particle Fracture in 2124 Aluminum-SiCp Composites, Materials Science and Engineering A, (1994), 183, 69-80.
  • [14] Sun, C., Song, M., Wang, Z. He, Y. Effect of Particle Size on the Microstructures and Mechanical Properties of SiC-reinforced Pure Aluminum Composites, Journal of Materials Engineering and Performance, 20, (2011), 1606-1612.
  • [15] Varma, K.V., Kamat, S.V., Mahajan, Y.R., Kutumbarao, V. Effect of Reinforcement Size on Low Strain Yielding Behaviour in Al–Cu–Mg/SiCp Composites,Materials Science and Engineering A, (2001), 318,57–64.
  • [16] O’Donnell, G. and Looney, L. Production of Aluminium Matrix Composite Components Using Conventional PM Technology, Materials Science and Engineering A, (2001), 303, 292-301.
  • [17] Meguid, S.A., Sun, Y., On the tensile and shear strength of nano-reinforced composite interfaces, Materials and Design, (2004), 25, 289–296
  • [18] Srivastava, V.K., (2011). Effect of carbon nanotubes on the strength of adhesive lap joints of C/C and C/C–SiC ceramic fibre composites, International Journal of Adhesion and Adhesives, 31, 486-489.
  • [19] Yıldırım, H., Pııhtılı, H., Investigation of the mechanic behaviours in hollow composite shafts having different fibre reinforcement and orientation angles, Materialwissenschaft und Werkstofftechic, (2016), 47(7), 646-656., Doi:10.1002/mawe.201600509
  • [20] Khashaba, U.A., Aljinaidi, A.A., Hamed, M.A., Development of CFRE composite scarf adhesive joints with SiC and Al2O3 nanoparticle, Composite Structures, (2015), 128, 415-427.
  • [21] Turan K., Pekbey Y., Progressive Failure Analysis of Reinforced-Adhesively Single-lap Joint, The journal of Adhesion, (2015), 91:12, 962-977.