CHARACTERIZATION OF LUBRICANT POLYETHYLENE WAXES

Polymer processing is become easy while using lubricant in a proper way. Hence viscosity reduction and gelation behavior/release effect of lubricants help the production speed and quality. In this manner by the growing need for lubricant characterization two technical-grade polyethylene (PE) waxes were investigated. PE is one of the most used lubricant and study by characterizing them using Fourier Transform Infrared (FT-IR) spectrophotometry, Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Differential Scanning Calorimetry (DSC) and Thermogravimetric analysis (TGA) to elucidate their structural, molecular and thermal characteristics in order to assess their effectiveness and suitability as lubricants in carpet manufacturing.

___

  • 1. F. C. Wang and W. C. Buzanowski (2000) Polymer additive analysis by pyrolysis–gas chromatography III. Lubricants, Journal of Chromatography A, 891, 313 – 324.
  • 2. B. Treffler (2005) Impact of lubricants on processing behavior of U-PVC, Plast. Rub. Compos. 34(3), 143 – 147. DOI: 10.1179/174328905X55506
  • 3. H.S. Mpanza and A.S. Luyt (2006) Influence of Different Waxes on the Physical Properties of Linear Low-density Polyethylene, S. Afr. J. Chem., 59, 48 – 54.
  • 4. E. B. Rabinovitch, E. Lacatus and J. W. Summers (1984) The Lubrication Mechanism of Calcium Stearate/Paraffin Wax Systems in PVC Compounds, J. Vinyl Technol. 6(3), 98 – 103.
  • 5. P. S. Umare, K. Rao, G. L. Tembe, D. A. Dhoble and B. Trivedi (2007) Polyethylene Waxes: Catalytic Synthesis by Ti‐Biphenolates, J. Macromol. Sci., Part A: Pure and Applied Chemistry, 44(9), 977-987, DOI: 10.1080/10601320701424297
  • 6. Z. Wu, Z. Guo and C. Yuan (2019) Influence of polyethylene wax on wear resistance for polyurethane composite material under low speed water-lubricated conditions, Wear, 426–427, 1008–1017.
  • 7. G. Wu and D. Yu (2012) Preparation of a novel infrared low-emissive coating from the Cu powder modified by the polyethylene wax, Infrared Physics & Technol. 55, 26 – 31.
  • 8. J.K. Akishino, D.P. Cerqueira, G.C. Silva, V. Swinka-Filho and M. Munaro (2016) Morphological and thermal evaluation of blends of polyethylene wax and paraffin, Thermochim. Acta, 626, 9 – 12
  • 9. I. Radecka, V. Irorere, G. Jiang, D. Hill, C. William, G. Adamus, M. Kwiecien, A. A. Marek, J. Zawadiak, B. Johnston and M. Kowalczuk (2016) Oxidized Polyethylene Wax as a Potential Carbon Source for PHA Production, Materials, 9, 367 – 382.
  • 10. W. Ciesinska, B. Liszynska and J. Zielinski (2016) Selected thermal properties of polyethylene waxes, J. Therm. Anal. Calorim., 125, 1439 – 1443.
  • 11. S. Yetgin, M. Gonen, S. Atakul-Savrık and D. Balkose (2019) Characterization and Identification of a Commercial Polyethylene Wax by Property Comparison with a Paraffin Wax, Sorbitan Monostearate and Myristic Acid, Proceedings of the 4th International Porous and Powder Materials Symposium and Exhibition, Marmaris, Turkey, pp 57-61
  • 12. Y. Zang, M. Ye, A. Han and Y. Ding (2017) Preparation of nano-encapsulated polyethylene wax particles for color toner by in situ emulsion polymerization, J. Appl. Polym. Sci. 134(2), 44399 – 44407. DOI: 10.1002/app.44399
  • 13. J.V. Gulmine, P.R. Janissek, H.M. Heise and L. Akcelrud (2002) Polyethylene characterization by FTIR, Polymer Testing 21, 557 – 563.
  • 14. M. Claire, A. Serge, R. Guy, M. Sylvie, N. Olivier and G. L. Marie-Florence (2007) Characterization and Quantification of Lubricants in a Cross-Linkable Varnish by Fourier Transform Infrared Absorption Spectroscopy (FT-IR) and Differential Scanning Calorimetry, Polym. Polym. Compos., 15(2), 83 – 90.
  • 15. R. Miller and G. Dawson (1980) Characterization of hydrocarbon waxes and polyethylenes by DSC, Thermochim. Acta, 41, 93 – 105.
  • 16. W. Urbaniak, W.Wasiak and J. Fall (2007) Waxes – products of thermal degradation of waste plastics – obtaining, capabilities, and application, ISSN 1733-4381, 6, 71 – 78.
  • 17. Facca, A.G., Kortschot, M.T., Yan, N., 2006. Predicting the elastic modulus of natural fiber reinforced thermoplastics. Compos. Part A 37, 1660–1671.
  • 18. Kakroodi, A. R., Kazemi, Y., Cloutier, A., & Rodrigue, D. (2015). Mechanical performance of polyethylene (PE)-based biocomposites. Biocomposites, 237–256. doi:10.1016/b978-1-78242-373-7.00003-2
  • 19. Fanselow S., Emamjomeh S. E., Wirth K.E., Schmidt J., Peukert W. (2016). Production of spherical wax and polyolefin microparticles by melt emulsification for additive manufacturing. Chemical Engineering Science 141. 282–292
  • 20. Tcholakova S., Vankovaa N., Denkov N. D., Danner T. (2007). Emulsification in turbulent flow: 3. Daughter drop-size distribution. Journal of Colloid and Interface Science 310. 570–589
  • 21. Zhou Liwei, Wang Xuan, Zhang Yongqi, Zhang Peng and Li Zhi (2019). An Experimental Study of the Crystallinity of Different Density Polyethylenes on the Breakdown Characteristics and the Conductance Mechanism Transformation under High Electric Field. Materials. 12. 2657
  • 22. Ahmed, T.; Mamat, O. The Development and Characterization of HDPE-silica Sand Nanoparticles Composites.In Proceedings of the 2011 IEEE Colloquium on Humanities, Science and Engineering, Penang, Malaysia, 5–6 December 2011; pp. 6–11. 23. Alapati, S.; Meledath, J.T.; Karmarkar, A. Effect of Morphology on Electrical Treeing in Low DensityPolyethylene Nanocomposites. IET Sci. Meas. Technol. 2014, 8, 60–68. [CrossRef]