Walking Energy Cost of Subjects Suffering from Unilateral Chronic Ankle Instability

Bu çalışmanın amacı tek taraflı ayak bileği istikrarsızlığının yürümenin enerji harcamasına olan etkisini araştırmaktır. Çalışmaya kronik ayak bileği instabiliteli, yaş ortalaması (21.4±5.55), boy ortalaması (177.85 ± 4.96) cm ve kilo ortalaması (81.25 ± 6.87) kg olan 20 hasta alındı. Hastalar ortopedi uzmanına yönlendirildi. Kontrol gurubu olarak yaş ortalaması (24.65 ± 4.61), boy ortalaması (178.7 ± 3.76) cm ve kilo ortalaması (80.4 ± 12.43) kg olan 20 sağlık birey alındı. Katılımcılar her test arasındaki yirmi dakika dinlenme süresi bırakılarak üç dakika boyunca 5 km / h (rahat yürüyüş) ve 6.5 km / h (hızlı yürüyüş) ile bir koşu bandı üzerinde yürüdü. Test öncesi 1.5 km / h hızında 3 dakika ısınma ve test sonrasında 1.5 km / h hızında 3 dakika toparlanma yapıldı. Her iki hız testindeki oksijen kullanımı ve enerji tüketimi bilgisayar bağlantılı sipirometre sistemli ZAN 100 flow handy П medical device ile ölçüldü. Sonuçlar : Her iki grupta, yürüme hızı 5 km/h den 6,5 km/h hızına çıkarılınca oksijen kullanımı ve enerji tüketiminde önemli artış görüldü. 5 km/h hızında her iki grup arasında oksijen kullanımı ve enerji tüketimi arasında fark yoktu. Hız 6,5 km/h hızına çıkıldığında kronik ayak bileği insitabiletisi olan hastalarda oksijen kullanımı ve enerji tüketimi kontrol gurubuna göre anlamlı derecede daha yüksek bulundu. Bundan dolayı; kronik ayak bileği instabiletesi özellikle hızlı yürüyüş sırasında yürüyüş enerji maliyetini arttırmıştır

Walking Energy Cost of Subjects Suffering from Unilateral Chronic Ankle Instability

The purpose of this study was to explore the effect of unilateral ankle instability on walking energy expenditure. Chronic ankle instability group consisted of 20 subjects their age average (21.4±5.55) years, height average (177.85 ± 4.96) cm and weight average (81.25 ± 6.87) kg, they were referred from orthopedic specialist. The control group consisted of 20 normal subjects, their age average (24.65 ± 4.61) years, height average (178.7 ± 3.76) cm and weight average (80.4 ± 12.43) kg. Participants walked on a treadmill at two speeds 5 km/h (comfortable walking) and 6.5 km/h (fast walking) for three min with resting period of twenty minutes between each test. Before testing there was 3 min warm up at 1.5 km/h, and after each test there was 3 min recovery at 1.5 km/h. The oxygen consumption and energy expenditure at the two speeds are measured by using ZAN 100 flow handy П medical device with a PC- connected to open spirometry system. Results revealed that there was a significant increase in oxygen consumption and energy expenditure of the two groups as walking speed increased from 5 to 6.5 km/h. There was no significant difference in oxygen consumption and energy expenditure between both groups at walking speed 5 km/h. However, the oxygen consumption and energy expenditure of chronic ankle instability group was significantly higher than control group at walking speed 6.5 km/h. So, chronic ankle instability increased the walking energy cost especially during fast walking.

___

  • Leardini A, O'Connor JJ, Catani F, Giannini S. The role of the passive structures in the mobility and stability of human ankle joint: A literature review. Foot Ankle Intern 2000; 21(7): 602-15.
  • Hintermann B. Biomechanics of the unstable ankle joint and clinical implication. Med Sci Sports Exerc 1999; 31(7 suppl) 459-69.
  • Crosbie J, Green T, Refshauge K. Effects of reduced ankle dorsiflexion following lateral ligament sprain on tempo- ral and spatial gait parameters. Gait Posture 1999; 9(3): 167-72.
  • Spaulding SJ, Livingstone LA, Hartsell HD. The influence of external orthotic support on the adaptive gait charac- teristics of individuals with chronically unstable ankles. Gait Posture 2003; 17: 152-8.
  • Liu K, Uygur M, Kaminski TW. Effect of Ankle Instability on Gait Parameters; A Systematic Review. Athlet Train Sports Health Care 2012; 1-7.
  • Sasaki K, Neptune RR. Muscle mechanical work and elastic energy utilization during walking and running near the preferred gait transition speed. Gait Posture 2006; 23: 383-90.
  • Boyd R, Fatone S, Rodda J, et al. High- or low-technology measurements of energy expenditure in clinical gait anal- ysis? Dev Med Child Neurol 1999; 41:676-82.
  • Rose J, Ralston HJ, Gamble JG. Energetics of walking. In: Rose J, and Gamble JG: Human walking. 2nd ed. Baltimore: William and Wilkins, 1994: pp 47-71.
  • Fisher SV, Gullicson G. Energy cost of ambulation in health and disability: A literature review. Arch Phys Med Rehab 1976; 59: 124-33.
  • Oligiati R, Burgunder JM, Mumenthaler M. Increased en- ergy cost of walking of multiple sclerosis: Effect of spas- ticity, ataxia, and weakness. Arch Phys Med Rehabil 1988; 69:846-9.
  • Landrum EL, Kelln CB, Parente WR, Ingersoll CD and Hertel J. Immediate effects of anterior-to-posterior talo- crural joint mobilization after prolonged ankle immobili- zation: A preliminary study. J Manipul Ther 2008; 16(2): 100-5.
  • Colak M, Ayan I, Dal U, Yaroglu T, Dag F, Yilmaz C, Beydagi H. Anterior cruciate ligament reconstruction improves the metabolic energy cost of level walking at customary speeds. Knee Surg Sports Traumatol Arthrosc 2011; 19(8): 1271-6.
  • Wikstrom EA, Tillman MD, Chmielewski TL, Cauraugh JH, Naugle KE, Borsa PA. Self-assessed disability and func- tional performance in individuals with and without ankle instability: a case control study. J Orthop Sports Phys Ther 2009; 39(6): 458-67.
  • Hass CJ, Bishop MD, Doidge D, Wikstrom EA. Chronic an- kle instability alters central organization of movement. Am J Sports Med 2010; 38(4): 829-34.
  • Brehm MA, Harlaar J, Groepenhof H. Validation of the portable VmaxST system for oxygen-uptake measure- ment. Gait Posture 2004; 20: 67-73.
  • Waters RL. Energy expenditure. In: Perry. Gait analysis: Normal and pathological function. Slack: Thorofore, NJ, 1992: pp443-89.
  • Waters RL, Mulroy S. The energy expenditure of normal and pathological gait. Gait Posture 1999; 9: 207-31.
  • McGibbon CA, Krebs DE, Puniello MS. Mechanical energy analysis identifies compensatory strategies in disabled el- ders’ gait. J Biomech 2001; 34: 481-90.
  • Waters RL, Branes G, Husseerl T, Silver L, Liss R. Comparable energy expenditure following arthrodesis of the hip and ankle. J Bone Joint Surg 1988; 70: 1032-7.
  • Hsu MJ, Nielsen DH, Lin-Chan SJ, Shurr D. The effects of prosthetic foot design on physiologic measurements, self- selected walking velocity, and physical activity in people with transtibial amputation. Arch Phys Med Rehabil 2006; 87: 123-9.
  • Inman VT, Ralston HJ, Todd F. Human walking. Baltimore: Williams and Wilkins, 1981; pp62-77.
  • Monaghan K, Delahunt E and Caulfield B. Ankle function during gait in patients with chronic ankle instability com- pared to controls. Cli Biomech 2006; 21: 168-74.
  • Testerman C, Griend RV. Evaluation of ankle instability using the biodex stability system. Foot Ankle Inter 1999; 20(5): 317-20.
  • Bernardi M, Macaluso A, Sproviero E, et al. Cost of walk- ing and locomotor impairment. J Electromyogr Kinesiol 1999; 9: 149-57.
  • Wikstrom EA, Bishop MD, Inamdar AD, Hass CJ. Gait ter- mination control strategies are altered in chronic ankle instability subjects. Med Sci Sports Exerc 2009; 197-205.
  • Abdelraouf OR, Abdel-aziem AA. Contralateral ankle ki- nematics during shod walking in subjects with unilateral chronic ankle instability. Beni-Suef University J Appl Sci 2012; 1(1): 21-34.
  • Zajac FE. Understanding muscle coordination of the hu- man leg with dynamical simulations. J Biomech 2002; 35: 1011-101.
European Journal of General Medicine-Cover
  • Başlangıç: 2015
  • Yayıncı: Sağlık Bilimleri Araştırmaları Derneği