ARPA ve BUĞDAY ÇEŞİTLERİNDE AĞIR METAL UYGULAMALARININ ANTİOKSİDAN SAVUNMA AKTİVASYONU ÜZERİNE ETKİLERİ

Ağır metaller, reaktif oksijen türlerinin oluşumuyla oksidatif stres için ajanlar olarak bilinir ve yeryüzünde birikir. Bu birikim daha sonra besin zinciri yoluyla insanlara taşınabilir ve daha ciddi sağlık sorunlarına neden olur. Çok hücreli yüksek organizmalar olarak bitkiler, bu trafik sırasında ağır metal birikiminin ilk durağıdır. Bu nedenle, bitkiler sadece bu ulaşımın aracı değil, aynı zamanda düşük üretkenlikleri nedeniyle hayvanlar ve insanlarla birlikte etkilenen diğer organizmalardır. Bununla birlikte, antioksidan savunma sistemleri oksidatif strese karşı çok önemli bir savunma oynadığından, bu tepkiler bitkilerde ağır metal toksisitesinin erken biyobelirteçleri olarak kullanılabilir. Buna dayanarak, bu çalışmada farklı kültür bitkilerinde antioksidan savunma tepkilerinin ağır metal kadmiyum ve kurşunun toksisitesi için güvenilir indikatörler olup olmadığını inceledik. Hordeum vulgare cv. Çıldır ve Triticum aestivum cv. Gerek tohumları kullanılarak, bahsedilen çeşitlerin kök ve sürgünlerinde glutatyon (GSH), protein içerikleri ve glutatyon S-transferaz (GST) aktivitelerini araştırmak için farklı tek ve kombine CdCl2 ve PbCl2 konsantrasyonları uygulanmıştır. Sonuçlarımız, ağır metallerin test edilen parametreler üzerinde etkili olduğunu ve sonuçlardaki değişkenliğin çeşitler arasında ağır metallere göre metabolizma hızındaki farklılıkları yansıttığını göstermiştir. Öte yandan, incelenen bitkilerde gözlenen yüksek GSH ve GST değerleri nedeniyle, çalışmada uygulanan ağır metaller açısından genel olarak stres koşullarına uyum sağladıkları belirtilmelidir.

THE EFFECTS of HEAVY METAL APPLICATIONS on ANTIOXIDANT DEFENCE ACTIVATION in BARLEY and WHEAT VARIETIES

Heavy metals are known as agents for oxidative stress by formation of reactive oxygen species and accumulated on the earth. This accumulation can than be transported via food chain to humans and causes some more serious health problems. As a multicellular higher organisms, plants are the first stop for heavy metal accumulation during this traffic. Therefore, plants are not only the vehicle of this transportation, but also another affected organisms together with animals and humans, due to their lowered self productivity. However, as antioxidant defence systems play a crucial defence against oxidative stress, these responses could be used as early biomarkers of heavy metal toxicity in plants. Based on this, we have examined whether antioxidant defence responses are reliable indicators for the toxicity of heavy metals cadmium and lead in different crop plants within this study. By using the seeds of Hordeum vulgare cv. Çıldır and Triticum aestivum cv. Gerek, different single and combined concentrations of CdCl2 and PbCl2 treatments were applied to investigate glutathione (GSH), protein contents and glutathione S-transferase (GST) activities in the roots and shoots of these mentioned varieties. Our results shown that, heavy metals had an effect on the tested parameters and variability in results reflect the differences in the rate of metabolism with regard to heavy metals between varieties. On the other hand, due to the high GSH and GST values observed in the studied plants, it should be mentioned that they are generally adaptable to stress conditions with regard to applied heavy metals in the study.

___

  • [1] Nagajyoti PC, Lee KD, Sreekanth TVM. Heavy metals, occurrence and toxicity for plants: A review. Environ Chem Lett 2010; 8: 199-216.
  • [2] Cuny D, Pignata ML, Kranner I, Beckett R. 2002. Biomarkers of pollution-induced oxidative stress and membrane damage in lichens. In: Nimis PL, Scheidegger C, Wolseley PA, editors. Monitoring with Lichens-Monitoring Lichens. Dordrecht, The Netherlands: Kluwer, 2002, pp. 97-110.
  • [3] Oztetik E. An introduction to oxidative stress in plants and the role of non-enzymatic antioxidants. In: Anjum NA, Umar S, Ahmad A, editors. Oxidative Stress in Plants: Causes, Consequences and Tolerance. New Delhi, India: IK Publications, 2012, pp. 1-50.
  • [4] Noctor G, Lelarge-Trouverie C, Mhamdi A. The metabolomics of oxidative stress. Phytochemistry 2014; 112: 33-53.
  • [5] Dixon DP, Lapthorn A, Edwards R. Plant glutathione transferases. Genome Biol 2002; 3(3): 3004.1-3004.10.
  • [6] Yazaki K. ABC transporters involved in the transport of plant secondary metabolites. FEBS Lett 2006; 580: 1183-1191.
  • [7] Frear DS, Swanson HR. Biosynthesis of S-(4-ethylamino-6-isopropylamino-2-s-triazine) glutathione: Partial purification and properties of glutathione S-transferase from corn. Phytochemistry 1970; 9: 2123-2132.
  • [8] Lallement P-A, Brouwer B, Keech O, Hecker A, Rouhier N. The still mysterious roles of cysteine-containing glutathione transferases in plants. Front Pharmacol 2014; 5: Article192.
  • [9] Riaz L, Mahmood T, Coyne MS, Khalid A, Rashid A. Physiological and antioxidant response of wheat (Triticum aestivum) seedlings to fluoroquinolone antibiotics. Chemosphere 2017; 177: 250e257.
  • [10] Hoagland DR, Arnon DI. The water-culture method for growing plants without soil. California Agricultural Experiment Station, Circular 347, Berkeley, California, 1950, 31 pp. https://archive.org/details/watercultureme3450hoag [Accessed 29 September 2021].
  • [11] Öztetik E. Biochemical and physiological responses of metal toxicity in some barley and wheat varieties from Central Anatolia. Biodicon 2016; 9: 12-25.
  • [12] Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys 1959; 82: 70-77.
  • [13] Oztetik E. Biomarkers of ecotoxicological oxidative stress in an urban environment: using evergreen plant in industrial areas. Ecotoxicology. 2015; 24: 903-914.
  • [14] Lowry OH, Rosebrough NJ, Farr AL, Randal RJ. Protein measurement with the folin phenol reagent. J Biol Chem 1951; 193: 265-275.
  • [15] Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 1974; 249: 7130-7139.
  • [16] Edwards R, Dixon DP, Walbot V. Plant glutathione S transferases: enzymes with multiple functions in sickness and in health. Trends Plant Sci 2000; 5: 193-198.
  • [17] Foyer CH, Noctor G. Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 2005a; 17: 1866-1875.
  • [18] Foyer CH, Noctor G. Oxidant and antioxidant signaling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 2005b; 28: 1056-1071.
  • [19] Freeman JL, Garcia D, Kim D, Hopf A, Salt DE. Constitutively elevated salicylic acid signals glutathione-mediated nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Physiol 2005; 137: 1082- 1091.
  • [20] Moller IM, Sweetlove L. ROS signaling-specificity is required. Trends Plant Sci 2010; 15: 370-374.
  • [21] De Dorlodot S, Lutts S, Bertin P. Effects of ferrous iron toxicity on the growth and mineral composition of an interspecific rice. J Plant Nutr 2005; 28: 1-20.
  • [22] Tripathi AK, Gautam M. Biochemical parameters of plants as indicators of air pollution. J Environ Biol 2007; 28: 127-132.
  • [23] Mittra B, Sharma S, Das AB, Henry SL, Das TK, Ghosh P, Ghosh S, Mohanty PA. A novel cadmium induced protein in wheat: Characterization and localization in root tissue. Biol Plant 2008; 52: 343-346.
  • [24] Chandra R, Bharagava RN, Yadav S, Mohan D. Accumulation and distribution of toxic metals in wheat (Triticum aestivum L.) and Indian mustard (Brassica campestris L.) irrigated with distillery and tannery effluents. J Hazard Mat 2009; 162: 1514-1521.
  • [25] Verma S, Dubey RS. Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 2003; 164: 645-655.
  • [26] Sharma P, Dubey RS. Lead toxicity in plants. Braz J Plant Physiol 2005; 17: 35-52.
  • [27] Haluskova L, Valentovicova K, Huttova J, Mistrık I, Tamas L. Effect of abiotic stresses on glutathione peroxidase and glutathione S-transferase activity in barley root tips. Plant Physiol Biochem 2009; 47: 1069-1074.
  • [28] Lamhamdi M, Bakrim A, Aarab A, Lafont R, Sayah F. Lead phytotoxicity on wheat (Triticum aestivum L.) seed germination and seedlings growth. C R Biol 2011; 334: 118-126.