Poliprol-Karbon Nanotüp Modifiye Elektrotta Farmasötik Tabletlerde Metamizol Sodyumun Voltammetrik Tayini

Polipirol-karbon nanotüp (PPy-CNT) kompozit elektrot, ultrasonikasyon ile eşleştirilmiş pulslu polimerizasyon tekniği ile hazırlanmıştır. Bu teknik, hem ultrasonikasyon hem de elektrokimyasal polimerizasyonun avantajlarına sahiptir. PPy-CNT kompoziti pulslu depolama tekniği ile camımsı karbon elektrot (GCE) yüzeyine kolayca modifiye edilmiş, ve metamizol yükseltgenmesine karşı camımsı karbon elektroda göre katalitik aktivitesi yüksek bir yüzey elde edilmiştir. Hazırlanan elektrot taramalı electron mikroskopu ile karakterize edilmiş ve pH:2 Britton-Robinson tamponunda metamizol davranışı incelenmiştir. Diferansiyel pulse voltammetrisi ile lineer aralık 5-500 mg L-1 olarak saptanmış ve belirtme alt sınırı1.6 mg L-1 olarak hesaplanmıştır. Yapılan tüm çalışmalar göstermiştir ki, PPY-CNT/GCE, metamizol tayini için yüksek duyarlılık, seçimlilik ve kararlılığa sahiptir. PPy-CNT/GCE sensörü novalgine tablet örneğine uygulanarak gerçek örnek analizi başarı ile gerçekleştirilmiştir. 

Voltammetric Determination of Metamizol Sodium in Pharmaceutical Tablets at Polypyrrole-Carbon Nanotube Modified Electrodes

Poly pyrrole-carbon nanotube (PPy-CNT) composite electrodes were prepared with ultrasonication assisted pulsed polymerization technique. This technique possesses both advantages of ultrasonication and electrochemical polymerization. PPy-CNT composite was modified on the bare glassy carbon electrode (GCE) surface easily with pulsed deposition technique that provide more catalytically active surface compared to the bare GCE towards metamizol oxidation. Resulted electrode was characterized by scanning electron microscopy and used for investigation of metamizaol in pH:2 Britton-Robinson buffer solution. In the differential pulse voltammetric determination, the linear range was found as 5-500 mg L-1 with a detection limit of 1.6 mg L-1 . The overall results showed that PPy-CNT electrode has an excellent sensitivity, selectivity and anti-fouling properties for the voltammetric determination of metamizol. PPy-CNT/GCE sensor was applied succesfully to the determination of metamizol in novalgine sample.

___

  • Arici, E., Karazhanov, S. 2016. “Carbon nanotubes for organic/inorganic hybrid solar cells”, Materials Science in Semiconductor Processing, 41, 137–149.
  • Assumpção, M.H.M.T., Moraes, A., De Souza, R.F.B., Reis, R.M., Rocha, R.S., Gaubeur, I., Calegaro, M.L., Hammer, P., Lanza, M.R.V., Santos M.C., 2013. “Degradation of dipyrone via advanced oxidation processes using a cerium nanostructured electrocatalyst material”, Applied Catalysis A: General, 462–463, 256–261.
  • Bensghaïer, A., Forrod, K., Seydou, M., Lamouri, A., Mičušik, M., Omastová, M., Beji, M., Chehimi, M.M. 2018. “Dye diazonium-modified multiwalled carbon nanotubes: Light harvesters for elastomeric optothermal actuators”, Vacuum, 155, 178–184.
  • Cittan, M., Koçak, S., Çelik, A., Dost, K. 2016. “Determination of oleuropein using multiwalled carbon nanotube modified glassy carbon electrode by adsorptive stripping square wave voltammetry”, Talanta, 159, 148–154.
  • Dadamos, T.R.L., Freitas, B. H., Gênova D.H.M., Espírito-Santo, R.D., González, E. R., Lanfredi, S., Teixeira, M.F.S. 2012. “Electrochemical characterization of the paste carbon modified electrode with KSr2Ni0.75Nb4.25O15−α solid in catalytic oxidation of the dipyrone”, Sensors and Actuators B, 169, 267–273.
  • Esteves, L.M., Oliveira, H.A., Passos, F.B. 2018. “Carbon nanotubes as catalyst support in chemical vapor deposition reaction: A review”, Journal of Industrial and Engineering Chemistry, 65, 1–12.
  • Fang, R., Li, G., Zhao, S., Yin, L., Du, K., Hou, P., Wang, S., Cheng, H.M., Liu, C., Li, F. 2017. “Single-wall carbon nanotube network enabled ultrahigh sulfur-content electrodes for high-performance lithium-sulfur batteries”, Nano Energy, 42, 205–214.
  • Ghica, M.E., Brett, C.M. 2014. “Poly(brilliant green) and poly(thionine) modified carbon nanotube coated carbon film electrodes for glucose and uric acid biosensors”, Talanta 130, 198–206.
  • Huang, W., Ahlfield, J.M., Kohl, P.A., Zhang, X. 2017. “Heat treated Tethered Iron Phthalocyanine Carbon Nanotube-based Catalysts for Oxygen Reduction Reaction in Hybrid Fuel Cells”, Electrochimica Acta, 257, 224–232.
  • Jiang, H., Lee, E.C. 2018. “Highly selective, reusable electrochemical impedimetric DNA sensors based on carbon nanotube/polymer composite electrode without surface modification”, Biosensors and Bioelectronics, 118, 16–22.
  • Koçak, S., Aslışen B. 2014. “Hydrazine oxidation at gold nanoparticles and poly (bromocresol purple) carbon nanotube modified glassy carbon electrode”, Sensors and Actuators B, 196, 610–618.
  • Kong, D., Jiang, L., Liu, Y., Wang, Z., Han, L., Lv, R., Lin, J., Lu, C.H., Chi, Y., Chen G. 2017. “Electrochemical investigation and determination of procaterol hydrochloride on poly(glutamic acid)/carboxyl functionalized multiwalled carbon nanotubes/polyvinyl alcohol modified glassy carbon electrode”, Talanta, 174, 436–443.
  • Korba, K., Pelit, L., Pelit, F.O., Özdokur, K.V., Ertaş, H., Eroğlu, A.E., Ertaş, F.N. 2013. “Preparation and characterization of sodium dodecyl sulfate doped polypyrrole solid phase micro extraction fiber and its application to endocrine disruptor pesticide analysis”. Journal of Chromatography B, 929, 90–96.
  • Li, J., Zhang, F., Wang, C., Shao, C., Li, B., Li, Y., Wu, Q.H., Yang, Y. 2017. “Self nitrogen-doped carbon nanotubes as anode materials for high capacity and cycling stability lithium-ion batteries”, Materials and Design, 133, 169–175.
  • Medeiros, E.P., Castro, S.L., Formiga, F.M., Santos, S.R.B., Araujo, M.C.U., Nascimento V.B. 2004. “A flow injection method for biamperometric determination of dipyrone in pharmaceuticals”, Microchemical Journal, 78, 91 – 96.
  • Mekassa, B., Bhagwan, M.T., Chandravanshi, S. 2017. “Electrochemical sensors modified with electropolymerized organic polymers are reproducible and possess more active sites than conventional electrodes”, Sensing and Bio-Sensing Research, 16, 46–54.
  • Perez-Ruiz T., C. Martinez-Lozano, V. Tomas, J. Carpena, Flowinjection fluorometric-determination of novalgin in pharmaceutical preparations, Microchem. J. 47 (1993) 296/301.
  • Pınar, T., Y. Yardım, Şentürk Z. 2018. “Electrochemical oxidation of ranitidine at poly (dopamine) modified carbon paste electrode: Its voltammetric determination in pharmaceutical and biological samples based on the enhancement effect of anionic surfactant”, Sensors & Actuators: B. Chemical, 273, 1463–1473.
  • Rohani, T., Taher, M.A. 2018. “Novel functionalized multiwalled carbon nanotube-glassy carbon electrode for simultaneous determination of ascorbic acid and uric acid”, Arabian Journal of Chemistry, 11, 214–220.
  • Sangamithirai, D., Munusamy, S., Narayanan, V., Stephen, A. 2018. “A voltammetric biosensor based on poly(o-methoxyaniline)-gold nanocomposite modified electrode for the simultaneous determination of dopamine and folic acid”, Materials Science & Engineering C, 91, 512–523.
  • Şenel, M., Nergiz, C. 2012. “Novel amperometric glucose biosensor based on covalent immobilization of glucose oxidase on poly(pyrrole propylic acid)/Au nanocomposite”, Current Applied Physics, 12, 1118-1124.
  • Shahrokhian, S., Asadia E. 2009. “Electrochemical determination of L-dopa in the presence of ascorbic acid on the surface of the glassy carbon electrode modified by a bilayer of multi-walled carbon nanotube and poly-pyrrole doped with tiron”, Journal of Electroanalytical Chemistry, 636, 40–46.
  • Teixeira, M.F.S. Dadamos T.R. L. 2009. “An electrochemical sensor for dipyrone determination based on nickel-salen film modified electrode”, Procedia Chemistry, 1, 297–300.
  • Yavuz E., Özdokur K.V., Çakar I., Koçak, S., Ertaş F.N. 2015. “Electrochemical Preparation, Characterization of Molybdenum-Oxide/Platinum Binary Catalysts and Its Application to Oxygen Reduction Reaction in Weakly Acidic Medium”, Electrochimica Acta, 151, 72–80.
  • Zhang, C., Zhang, L., Cao, S., Jiang, Z., Wu, H., Yan, M., Zhang X., Jian, S., Xue F. 2016. “Simultaneous determination of residues of dipyrone metabolites in goat tissues by hydrophilic interaction liquid chromatography tandem mass spectrometry”, Food Chemistry, 196, 83–89.
Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1307-9085
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2008
  • Yayıncı: Erzincan Binali Yıldırım Üniversitesi, Fen Bilimleri Enstitüsü
Sayıdaki Diğer Makaleler

Güç Sistemlerinde Aşırı Akım Koruma Koordinasyon Modelinin Oluşturulması, Benzetimi ve Optimizasyonu

Ozan AKDAĞ, Celaleddin YEROĞLU

Erzincan İlinde Kırmızı Et Tüketim Alışkanlıkları ve Tüketicilerin İthal Kırmızı Ete Bakış Açılarının Değerlendirilmesi

Selçuk ÖZYÜREK, Kadir ÇEBİ, Doğan TÜRKYILMAZ, Nurinisa ESENBUĞA, Ülkü DAĞDELEN, Mustafa YAPRAK

Genelleştirilmiş Srivastava-Attiya Operatörü Yardımıyla Tanımlanan Konkav Yalınkat Fonksiyonlarda Fekete-Szegö Problemi

Hasan BAYRAM, Sibel YALÇIN TOKGÖZ

Ahşap Kompozit Malzemelerin Mekanik ve Fiziksel Özelliklerine göre Tahmininde Radyal Temelli Fonksiyon Sinir Ağının Kullanımı

Ali İhsan KAYA, Muhammer İLKUÇAR, Ahmet ÇİFCİ

Somos 4 Dizilerinin Tamsayılık Özelliği Üzerine

Betül GEZER

Katil Mayalar ve Williopsis spp.’nin Bozucu Mikroorganizmalar Üzerindeki Etkisi, Katil Toksinlerin Kullanım Olanakları

Mehmet YÜKSEL, Arzu KAVAZ YÜKSEL

7075 Alüminyum Malzemesinin Frezelenmesinde Yüzey Pürüzlülüğünün Yanıt Yüzey Metodu İle Optimizasyonu

Levent UĞUR

Antikanser İlaç Etken Madde Busulfana Seçici Katı-Hal PVC Membran Potansiyometrik Mikrosensör

Murat YOLCU, Berna AYDIN ARSLAN

Extended Fisher-Kolmogorov Denklemini Çözmek İçin Kuartik B-Spline Diferansiyel Kuadratur Metot

Ali BAŞHAN

Antibiyotik Olarak Kullanılan Sultamisilin, Sefdinir, Vankomisin Hidroklorür ve Kolistin Etken Maddelerinin İnsan Serum Paraoksonaz1 Enzim Aktivitesi Üzerine in vitro Etkilerinin İncelenmesi

Esra DİLEK, Merve Berivan ÖZÇELİK, Serhat YILDIRIM