On Some Properties of Space S_{w}^{α}

In this study, first of all we define spaces S^{Θ}(ℝ^{d}) and S_{w}^{Θ}(ℝ^{d}) and give examples of these spaces. After we define S_{w}^{α}(ℝ^{d}) to be the vector space of f∈L_{w}¹(ℝ^{d}) such that the fractional Fourier transform F_{α}f belongs to S_{w}^{Θ}(ℝ^{d}). We endow this space with the sum norm ‖f‖_{S_{w}^{α}}=‖f‖_{1,w}+‖F_{α}f‖_{S_{w}^{Θ}} and then show that it is a Banach space. We show that S_{w}^{α}(ℝ^{d}) is a Banach algebra and a Banach ideal on L_{w}¹(ℝ^{d}) if the space  S_{w}^{Θ}(ℝ^{d}) is solid. Furthermore, we proof that the space S_{w}^{α}(ℝ^{d}) is translation and character invaryant and also these operators are continuous. Finally, we discuss inclusion properties of these spaces.

On Some Properties of Space w S

In this study, first of all we define spaces ( ) d S and ( ) dw S and give examples of these spaces. After wedefine ( ) dw S to be the vector space of 1( ) df Lw such that the fractional Fourier transform F f  belongsto ( ) dw S . We endow this space with the sum normSw 1,w Swf f F f      and then show that it is aBanach space. We show that ( ) dw Sis a Banach algebra and a Banach ideal on   1 dw L if the space( ) dw S is solid. Furthermore, we prove that the space ( ) dw S is translation and character invaryant andalso these operators are continuous. Finally, we discuss inclusion properties of these spaces.

___

  • Almeida, L. B. 1994. “The fractional Fourier transform and time-frequency representations”, IEEE Transactions on Signal Processing, 42 (11), 3084-3091.
  • Almeida, L. B. 1997. “Product and convolution theorems for the fractional Fourier transform”, IEEE Signal Processing Letters, 4 (1), 15-17.
  • Bultheel, A. and Martinez, H. 2002. “A shattered survey of the fractional Fourier transform”, Department of Computer Science, K.U.Leuveven, Report TW337.
  • Cigler, J. 1969. “Normed ideals in ”, Indagationes Mathematicae, 72(3), 273-282.
  • Doğan, M. and Gürkanlı, A. T. 2000. On functions with Fourier transforms in . Bulletin of Calcutta Mathematical Society, 92(2), 111-120.
  • Feichtinger, H. G. 1977. “On a class of convolution algebras of functions”, Annales de l’institut Fourier, 27(3), 135-162.
  • Feichtinger, H. G., Graham, C. and Lakien, E. 1979. “Nonfactorization in commutative, weakly selfadjoint Banach algebras”, Pacific Journal of Mathematics, 80(1), 117-125.
  • Feichtinger, H. G. ve Gürkanlı A. T. 1990. “On a family of weighted convolution algebras”, International Journal of Mathematics and Mathematical Sciences, 13(3), 517-525.
  • Fischer, R. H., Gürkanlı, A. T. and Liu, T. S. 1996. “On a family of weighted spaces”, Mathematica Slovaca, 46(1), 71-82.
  • Namias, V. 1980. “The fractional order of Fourier transform and its application in quantum mechanics”, Journal of the Institute of Mathematics and its Applications, 25, 241-265.
  • Ozaktas, H. M., Kutay, M. A. and Zalevsky, Z. 2001. “The fractional Fourier transform with applications in optics and signal processing”. John Wiley and Sons, England.
  • Reiter, H. and Stegeman, J. D. 2000. “Classical harmonic analysis and locally compact group”, Clarendon Press, Oxford.
  • Reiter, H. 1971. “ Algebras and Segal Algebras”, Springer-Verlag, New York.
  • Toksoy, E. and Sandıkçı, A. 2015. “On function spaces with fractional Fourier transform in weighted Lebesgue spaces”, Journal of Inequalities and Applications, 2015(1), 87.
  • Wang, H. C. 1977. “Homogeneous Banach Algebras”, Marcel Dekker Inc., New York and Basel.