Gamma Kuvvet Fonksiyonlarının Bazı Samaryum İzotoplarının (γ,n) ve (γ,2n) Reaksiyonlarının Tesir Kesiti Hesaplamaları Üzerindeki Etkileri

Teorik modeller ile yapılan çalışmalar, deneysel verilerin mevcut olmadığı veya deneysel çalışmaların gerçekleştirilemediği durumlarda araştırmacıların farklı veriler hakkında öngörü sahibi olmaları sağlar. Bu verilerden biri de, bir reaksiyonun meydana gelme olasılığı olarak tanımlanabilen tesir kesiti değeridir. Ölçülebilen veya hesaplanabilen bir değer olan tesir kesitinin hesaplanmasında, çeşitli modellerin farklı etkilerinin araştırılması bu değerin doğru hesaplanabilmesi açısından son derece önemlidir. Bu bağlamda, bu çalışmada 148,150,152,154Sm izotoplarının (γ,n) ve (γ,2n) reaksiyonlarında tesir kesiti hesaplamalarında farklı gama kuvvet fonksiyonlarının etkilerinin araştırılması amaçlanmıştır. Hesaplamalarda TALYS 1.9 kodu kullanılmış ve elde edilen hesaplama sonuçları literatürde mevcut olan deneysel veriler ile karşılaştırılmıştır. Ayrıca, elde edilen sonuçlar ve deneysel veriler kullanılarak göreli bağıl varyans ve ortalama ağırlıklı sapma analizleri de yapılmıştır. Bu sayede her bir reaksiyon için deneysel veriler ile en uyumlu sonuçların elde edilmesini sağlayan gama kuvvet fonksiyonu tespit edilmiştir.

Effects of Gamma Strength Functions on Cross–Section Calculations of Some Samarium Isotopes (γ,n) and (γ,2n) Reactions

Studies with theoretical models allow researchers to have predictions about different data when experimental data are not available or experimental studies cannot be performed. One of these data is the cross–section value, which can be defined as the probability of occurrence of a reaction. In calculating the cross section, which is a value that can be measured or calculated, investigating the different effects of various models is extremely important in order to calculate this value correctly. In this context, in this study, it was aimed to investigate the effects of different gamma strength functions in the cross–section calculations in the (γ,n) and (γ,2n) reactions of 148,150,152,154Sm isotopes. TALYS 1.9 code was used in the calculations and the results obtained were compared with the experimental data available in the literature. In addition, relative variance and mean weighted deviation analyzes were performed using the obtained results and experimental data. By this way, the gamma strength functions, which provide the most compatible results with the experimental data for each reaction, has been determined.

___

  • Axel, P., 1962. “Electric dipole ground-state transition width strength function and 7-MeV photon interactions”. Physical Review, 126, 671.
  • Ay, K. O., 2019. “149,151Nd Çekirdeklerinin Nükleer Düzey Yoğunluklarının ve Gama Kuvvet Fonksiyonlarının İncelenmesi”, Eskişehir Osmangazi Üniversitesi, Fen Bilimleri Enstitüsü, Eskişehir, Doktora Tezi, 98 s.
  • Aydin, A., Pekdogan, H., Kaplan, A., Sarpün, İ. H., Tel, E., Demir, B., 2015. “Comparison of Level Density Models for the 60,61,62,64Ni(p,n) Reactions of Structural Fusion Material Nickel from Threshold to 30 MeV”. Journal of Fusion Energy, 34(5), 1105-1108.
  • Aydın, A., Yalım, H. A., Tel, E., Şarer, B., Ünal, R., Sarpün, İ. H., Kaplan, A., Dağ, M., 2009. “Level density parameter dependence of the fission cross sections of some subactinide nuclei induced by protons with the incident energy up to 250 MeV”. Annals of Nuclear Energy, 36(9), 1307-1312.
  • Baernighausen, H., Haschke, J. M., 1978. “Compositions and crystal structures of the intermediate phases in the samarium-bromine system”. Inorganic Chemistry, 17, 18-21.
  • Bartholomew, G. A., Earle, E. D., Ferguson, A. J., Knowles, J. W., Lone, M. A., 1973. “Gamma-Ray Strength Functions”, Advances in Nuclear Physics, 7, Springer, Boston, USA, 229-324.
  • Becquerel, H., 1896. “Sur les radiations émises par phosphorescence”. Comptes rendus de l'Académie des Sciences, 122, 420-421.
  • Brink, D. M., 1957. “Individual particle and collective aspects of the nuclear photoeffect”. Nuclear Physics, 4, 215. Canbula, B., 2017. “Bazı tellür izotoplarının nötron yakalama tesir kesiti analizi”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 13(2), 445-455.
  • Capote, R., Herman, M., Obložinský, P., Young, P. G., Goriely, S., Belgya, T., Ignatyuk, A. V., Koning, A. J., Hilaire, S., Plujko, V. A., Avrigeanu, M., Bersillon, O., Chadwick, M. B., Fukahori, T., Ge, Z., Han, Y., Kailas, S., Kopecky, J., Maslov, V. M., Reffo, G., Sin, M., Soukhovitskii, E. S., Talou, P., 2009. “RIPL – reference input parameter library for calculation of nuclear reactions and nuclear data evaluations”. Nuclear Data Sheets, 110, 3107.
  • Carlos, P., Beil, H., Bergère, R., Leprêtre, A., Miniac, A. De., Veyssière, A., 1974. “The giant dipole resonance in the transition region of the samarium isotopes”. Nuclear Physics A, 225(1), 171-188.
  • Chu, S., 2011. “U.S. Department of Energy Critical Materials Strategy”, DIANE Publishing.
  • Coursey, J. S., Schwab, D. J., Tsai, J. J., Dragoset, R. A., 2015. “Atomic Weights and Isotopic Compositions (version 4.1)”, National Institute of Standards and Technology, https://www.nist.gov/pml/atomic-weights-and-isotopic-compositions-relative-atomic-masses, Erişim Tarihi: 25.03.2020
  • Demir, B., Kaplan, A., Çapalı, V., Sarpün, İ. H., Aydın, A., Tel, E., 2015. “Production cross–section calculations of medical 32P, 117Sn, 153Sm and 186,188Re radionuclides used in bone pain palliation treatment”, Kerntechnik, 80(1), 58-65.
  • Emsley, J., 2011. “Nature’s Building Blocks: An A-Z Guide to the Elements”, Oxford University Press, New York, USA, 2nd Edition, 2011, 720 s.
  • Evans, W. J., Hughes, L. A., Hanusa, T. P., 1986. “Synthesis and x-ray crystal structure of bis(pentamethylcyclopentadienyl) complexes of samarium and europium: (C5Me5)2Sm and (C5Me5)2Eu”. Organometallics, 5(7), 1285-1291.
  • Filipescu, D. M., Gheorghe, I., Utsunomiya, H., Goriely, S., Renstrøm, T., Nyhus, H. T., Tesileanu, O., Glodariu, T., Shima, T., Takahisa, K., Miyamoto, S., Lui, Y. W., Hilaire, S., Péru, S., Martini, M., Koning, A. J., 2014. “Photoneutron cross sections for samarium isotopes: Toward a unified understanding of (γ,n) and (n,γ) reactions in the rare earth region”. Physical Review C, 90, 064616.
  • Hara, K. Y., Harada, H., Kitatani, F., Goko, S., Hohara, S., Kaihori, T., Makinaga, A., Utsunomiya, H., Toyokawa, H., Yamada, K., 2007. “Measurements of the 152Srn(γ,n) Cross Section with Laser-Compton Scattering γ Rays and the Photon Difference Method”. Journal of Nuclear Science and Technology, 44(7), 938-945.
  • Haynes, W. M., 2014. “CRC Handbook of Chemistry and Physics, 95th Edition”, CRC Press, Hoboken, New Jersey, USA, 2704 s.
  • Holmes, R. A., 1992. “[153Sm]EDTMP: A potential therapy for bone cancer pain”, Seminars in Nuclear Medicine, 22(1), 41-45.
  • Jayaraman, A., Narayanamurti, V., Bucher, E., Maines, R., 1970. “Continuous and Discontinuous Semiconductor-Metal Transition in Samarium Monochalcogenides Under Pressure”. Physical Review Letters, 25 (20), 1430.
  • Kaplan, A., Özdoğan H., Aydin, A., Tel, E., 2014. “Photo-Neutron Cross-Section Calculations of 142,143,144,145,146,150Nd Rare-Earth Isotopes for (g,n) Reaction”. Physics of Atomic Nuclei, 77(11), 1371-1377.
  • Kaplan, A., Özdoğan, H., Aydın, A., Tel, E., 2013. “Deuteron-Induced Cross Section Calculations of Some Structural Fusion Materials”. Journal of Fusion Energy, 32(1), 97-102.
  • Kara, A., Yiğit, M., Korkut, T., Tel, E., 2015. “Cross Section Calculations of Neutron Induced Reactions on 124,126,128,134,136Xe”. Journal of Fusion Energy, 34, 882-886.
  • Kavun, Y., Tel, E., Şahan, M., Salan, A., 2019. “Calculation of Production Reaction Cross Section of Some Radiopharmaceuticals Used in Nuclear Medicine by New Density Dependent Parameters”. Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, 14(1), 57-61.
  • Kolesnikov-Gauthier, H., Lemoine, N., Tresch-Bruneel, E., Olivier, A., Oudoux, A., Penel, N., 2018. “Efficacy and safety of 153Sm-EDTMP as treatment of painful bone metastasis: a large single-center study”, Supportive Care in Cancer, 26, 751-758.
  • Koning, A., Hilaire, S., Goriely, S., 2017. TALYS–1.9 A Nuclear Reaction Program, User Manual, 1st ed. 21 December 2017.
  • Kopecky, J., Uhl, M., 1990. “Test of gamma-ray strength functions in nuclear reaction model calculations”. Physical Review C, 41, 1941.
  • Kurenkov, N., Lunev, V., Shubin, Y., 1999. “Evaluation of calculation methods for excitation functions for production of radioisotopes of iodine, thallium and other elements”. Applied Radiation and Isotopes, 50, 541-549.
  • Leger, J., Yacoubi, N., Loriers, J., 1981. “Synthesis of rare earth monoxides”. Journal of Solid State Chemistry, 36(3), 261.
  • Lone, M. A., 1979. “Photon Strength Functions”, Neutron Capture Gamma-Ray Spectroscopy, Springer, Boston, USA, 161-180.
  • Martin, B. R., 2006. “Nuclear and Particle Physics”. John Wiley & Sons, Ltd.
  • Martin, D., 2012. “Do we understand gamma strength functions? The case of 96Mo”, Institut für Kernphysik Technische Universitat Darmstadt. http://tid.uio.no/workshop2013/talks/Oslo13_s413_Martin.pdf, Erişim Tarihi: 25.03.2020
  • Özdoğan, H., 2018. “181Ta(α,xn) Reaksiyonu Tesir Kesitlerinin İncelenmesi”. Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, 13(2), 54-66.
  • Özdoğan, H., Şekerci, M., Kaplan, A., 2019. “Investigation of gamma strength functions and level density models effects on photon induced reaction cross–section calculations for the fusion structural materials 46,50Ti, 51V, 58Ni and 63Cu, Applied Radiation and Isotopes, 143, 6-10.
  • Özdoğan, H., Şekerci, M., Sarpün, İ. H., Kaplan, A., 2018. “Investigation of level density parameter effects on (p,n) and (p,2n) reaction cross–sections for the fusion structural materials 48Ti, 63Cu and 90Zr”. Applied Radiation and Isotopes, 140, 29-34.
  • Özgür, M., 2017. “Neodimyum-144,145 Çekilrdeklerinin Durum Yoğunlukları ve Gama Kuvvet Fonksiyonları”, Eskişehir Osmangazi Üniversitesi, Fen Bilimleri Enstitüsü, Yüksel Lisans Tezi, Eskişehir, 65 s.
  • Sarpün, İ. H., Özdoğan, H., Taşdöven, K., Yalim, H. A., Kaplan, A., 2019. “Theoretical photoneutron cross-section calculations on Osmium isotopes by Talys and Empire codes”. Modern Physics Letters A, 34(26), 1950210.
  • Şekerci M., Özdoğan H., Kaplan A., 2019. “Investigation on the Different Production Routes of 67Ga Radioisotope by Using Different Level Density Models”. Moscow University Physics Bulletin, 74, 277-281.
  • Şekerci M., Özdoğan H., Kaplan A., 2020. “An investigation of effects of level density models and gamma ray strength functions on cross-section calculations for the production of 90Y, 153Sm, 169Er, 177Lu and 186Re therapeutic radioisotopes via (n,g) reactions”, Radiochimıca Acta, 108, 11-17.
  • Spedding, F. H., Gschneidner, K., Daane, A. H., 1958. “The Crystal Structures of Some of the Rare Earth Carbides”. Journal of the American Chemical Society, 80(17), 4499-4503.
  • Yiğit, M., Bostan, S. N., 2019. “Study on cross section calculations for (n,p) nuclear reactions of cadmium isotopes”, Applied Radiation and Isotopes, 154, 108868.
  • Yiğit, M., Tel, E., Sarpün, İ. H., 2016. “Excitation function calculations for α + 93Nb nuclear reactions”. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 385, 59-64.
  • Yiğit, M., Tel, E., Tanır, G., 2013. “Calculations of Proton Emission Cross Sections in Deuteron Induced Reactions of Some Fusion Structural Materials”. Journal of Fusion Energy, 32, 317-321.
  • Zerkin, V. V., Pritychenko, B., 2018. “The Experimental Nuclear Reaction Data (EXFOR): Extended Computer Database and Web Retrieval System”. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 888, 31-43.
Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1307-9085
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2008
  • Yayıncı: Erzincan Binali Yıldırım Üniversitesi, Fen Bilimleri Enstitüsü
Sayıdaki Diğer Makaleler

Traveling Wave Solution of Vakhnenko-Parkes Equation

Hülya DURUR, Asıf YOKUŞ

Çevre Numunelerinde Sodyum İyonunun Potansiyometrik Detektör Kullanarak Akış Enjeksiyon Tekniği ile Tayini

Adem Asan

Ihlamur Ekstraktı Kullanılarak Yeşil Sentez ile Manyetik Antibiyotik Gönderim Sisteminin Hazırlanması ve Karakterizasyonu

Güliz AK

Kullanılan Farklı Katkı Maddelerinin ve Farklı Beton Dayanım Seviyelerinin Kısa Kirişlerin Sünekliğine Etkisi

Atila KUMBASAROĞLU

Bir Çalışma Ortamında Bulunan Trafo Etrafındaki Oldukça Düşük Frekanslı Manyetik Alanların Ölçümü ve Risk Değerlendirilmesi

Semih ÖZDEN, Bahriye SIRAV ARAL, Ayşe Gülnihal CANSEVEN KURŞUN, Nesrin SEYHAN

Yıldız-Şekilli Poli(L-Laktik Asit) Nanokompozitlerin Yerinde Polimerizasyon Yöntemiyle Hazırlanması ve İncelenmesi

Naile KARAKEHYA, Ceyda BİLGİÇ

Ankara’nın Farklı Bölgelerinden Toplanan (Pinus nigra Arnold)’da Ağır Metal Birikiminin Araştırılması

Etem OSMA, Hasan TÜRK

Gamma Kuvvet Fonksiyonlarının Bazı Samaryum İzotoplarının (γ,n) ve (γ,2n) Reaksiyonlarının Tesir Kesiti Hesaplamaları Üzerindeki Etkileri

Mert ŞEKERCİ

Design, Synthesis and Biological Activities of Chalcones with Piperonal Moiety

Mehtap TUĞRAK, Halise İnci GÜL, Barış ANIL, Hülya AKINCIOĞLU

Elektronik Devrelerdeki Silindirik Soğutuculardan Kaynaklanan Elektromanyetik Girişimlerin 0-10 GHz Bandında Araştırılması

Habib DOĞAN, İbrahim Bahadır BASYİGİT, Abdullah GENC