Barut Ağacı Kabuğu’nun (Rhamnus Frangula L.) Bazı Tekstil Materyallerini Boyayabilme Özelliklerinin Araştırılması

Öz: Barut ağacı kabuğu (BAK) çoğunlukla bağırsak florasının düzenlenmesinde, kesik ve yaralarda tonik olarak geleneksel tıpta ve eczacılıkta sıkça kullanılan doğal bir bitkisel kaynaktır ve son yıllarda yapılan araştırmalarda anti-kanserojen, anti-oksidan, anti-bakteriyel gibi birçok özelliklerinin de olduğu tespit edilmiştir. Bu çalışmada, BAK’ın doğal bir boyarmadde kaynağı olup olamayacağını test etmek için en önemli tekstil malzemelerinden biri olan pamuklu ve yünlü kumaşların boyama özellikleri araştırılmıştır. Boyama işlemleri hem mordansız (metal tuzu kullanılmadan) hem de 4 farklı metal tuzu (KAl(SO4)2.12H2O, CuSO4.5H2O, FeSO4.7H2O, K2Cr2O7) kullanılarak gerçekleştirilmiştir. Boyamalar laboratuvar şartlarında HT makinada 100˚C’de 60 dakika süreyle gerçekleştirilmiştir. Mordanlı yapılan çalışmalarda birlikte mordanlama yöntemi kullanılmıştır. Boyamalardan sonra elde edilen numunelere yıkama, sürtme, ter ve ışık haslık testleri uygulanmıştır. CIE L*a*b* ve K/S değerleri Konica Minolta 3600d spektrofotometresi kullanılarak ölçülmüştür. BAK’a ait çözeltinin UV görünür bölge spektrumu VWR spektrofotometre 3100PC ve FTIR spektrumu ise Perkin Elmer 400 spektrometresi kullanılarak tespit edilmiştir. Boyama renk verimleri ve diğer test sonuçları birlikte değerlendirildiğinde Barut ağacı kabuğunun selülozik ve protein esaslı tekstil materyallerini renklendirebileceği tespit edilmiş olup bu bitkisel kaynağın doğal bir boyarmadde kaynağı olarak kullanılabileceği öngörülmektedir.

The Dyeing Properties of Frangula Bark (Rhamnus Frangula L.) On the Some Textile Materials

Frangula bark is a natural herbal resource commonly used in traditional medicine as a tonic for the regulation of intestinal flora, cuts and wounds, and it has been found that anti-carcinogen, anti-oxidant and anti-bacterial properties have been used in recent years. This study was conducted on the dyeing properties of cotton and wool fabrics which are the most used textile materials of Frangula bark as a source of natural dyestuff. The dyeing processes were carried out both without mordant and using 4 different metal salts (KAl(SO4)2.12H2O, CuSO4.5H2O, FeSO4.7H2O, K2Cr2O7). The dyeing was carried out on HT machine at 100˚C for 60 minutes under laboratory conditions. Simultaneously mordanting method was used in the studies using mordant agents. After dyeing, washing, rubbing, perspiration and light fastness tests were applied to the samples obtained. CIE L*a*b* and K/S values were collected using Konica Minolta 3600d spectrophotometer. The UV visible region spectrum of BAK solutions was determined by VWR spectrophotometer 3100PC and FTIR spectrum by Perkin Elmer 400 spectrometer. The dyeing and other test results, it is predicted that Frangula bark can color cellulosic and protein-based textile materials and this plant source could be a natural source of dyes.

___

  • [1] Gulrajani, M. L. 2001. Present status of natural dyes. Indian Journal of Fibre and Textile Research, 26(2001), 191-201.
  • [2] Samanta, A. K., Agarwal, P. 2009. Application of natural dyes on textiles. Indian Journal of Fibers & Textile Research, 34(2009), 384 -399.
  • [3] Melo, M. J. 2009. History of Natural dyes in the Ancient Mediterranean World. Handbook of Natural Colorants, ed. 2009, Becktold, T., Mussak, R., Wiley.
  • [4] Chengaiah, B., et al. 2010. Medicinal Importance of Natural Dyes-a Review. International Journal of PharmTech Research, 2(2010), 144-154.
  • [5] Samanta, A. K., Konar, A. 2011. Dyeing of Textiles with Natural Dyes. Kumbasar, E. P. A. ed. 2011, Natural dyes, InTech, Croatia.
  • [6] Karadağ, R. 2007. Doğal Boyamacılık, Dösim, Ankara, 128s.
  • [7] Giusti, M. M., Wallace, T. C. 2009. Flavonoids as natural pigments. Bechtold T., Mussak R., ed. 2009, Handbook of natural colorants, John Wiley and Sons, Ltd., United Kingdom, pp.257-258.
  • [8] Davulcu, A., et al. 2014. Dyeing of cotton with thyme and pomegranate peel. Cellulose, 21(2014), 4671-4680.
  • [9] Benli, H., Bahtiyari, M. İ. 2015 (a). Use of ultrasound in biopreparation and natural dyeing of cotton fabric in a single bath. Cellulose, 22(2015), 867-877.
  • [10] Benli, H., Bahtiyari, M. İ. 2016. Pamuklu kumaşların ozon-hidrojen peroksit kombinasyonu ile ağartılması ve doğal boyalar ile renklendirilmesi. Tekstil ve Mühendis, 23(2016), 189-196.
  • [11] Benli, H. 2017. An investigation of dyeability of wool fabric with red cabbage (Brassica oleracea L. var.) extract. Industria Textila, 68(2017), 108-115.
  • [12] Benli, H. 2017. A Study on the Dyeing Characteristic of Wool Fabric with American Ivy (Parthenocissus Quinquefolia L.). Tekstil ve Mühendis, 24(2017), 54-61.
  • [13] Han, S., Yang, Y. 2005. Antimicrobial activity of wool fabric treated with curcumin. Dyes and Pigments, 64(2005), 157-161.
  • [14] Singh, R., et al. 2005. Antimicrobial activity of some natural dyes. Dyes and Pigments, 66(2005), 99-102.
  • [15] Gawish, S. M., et al. 2017. Effect of Mordant on UV Protection and Antimicrobial Activity of Cotton, Wool, Silk and Nylon Fabrics Dyed with Some Natural Dyes. Journal of Nanomedicine and Nanotechnology, 8(2017), 1-9.
  • [16] Yılmaz, F., et al. 2020 (a). Use of Viburnum Opulus L. (Caprifoliaceae) in Dyeing and Antibacterial Finishing of Cotton. Journal of Natural Fibers, 17(2020),1081-1088.
  • [17] Yılmaz, F., et al. 2020 (b). Treatment of originally coloured wools with garlic stem extracts and zinc chloride to ensure anti‐bacterial properties with limited colour changes. Coloration Technology, 136(2020),147-152.
  • [18] Andreeva, T. I., et al. 2004. Medicinal plants antioxidant activity of cranberry tree (viburnum Opulus l.) bark extract. Pharmaceutical Chemistry Journal, 38(2004), 548-550.
  • [19] Şapcı, H., et al. 2017. Antimicrobial and antifungal activity of fabrics dyed with viburnum opulus and onion skins. International Journal of Secondary Metabolite, 4(2017), 280-284.
  • [20] Grifoni, D., et al. 2009. Laboratory and Outdoor Assessment of UV Protection Offered by Flax and Hemp Fabrics Dyed with Natural Dyes. Photochemistry and Photobiology, 85(2009), 313-320.
  • [21] Hou, X., et al. 2013. Dyeing and UV-protection properties of water extracts from orange peel. Journal of Cleaner Production, 52(2013), 410-419.
  • [22] Van den Beg, A. J. J., Labadie, R. P. 1984. Antraquinones, Anthrones and Dianthrones in Callus Culures of Rhamnus frangula and Rhamnus purshiana. Planta Medica, 50(1984), 449-451.
  • [23] Francis, G. W., Aksnes, D. W., Holt, ϕ. 1998. Assignment of the 1H and 13C NMR spectra of anthraquinone glycosides from Rhamnus frangula. Magnetic Resonance in Chemistry, 36(1998), 769-772.
  • [24] Manojlovic, N. T., Solujic, S., Sukdolak, S., Milosev, M. 2005. Antifungal activity of Rubia tinctorum, Rhamnus frangula and Caloplaca cerina. Fitoterapia, 76(2005), 244-246.
  • [25] Singh, D., Rawat, M. S. M., Semalty, A., Semalty, M. 2012. Emodin–phospholipid complex A potential of herbal drug in the novel drug delivery system. Journal of Thermal Analysis Calorimetry, 108(2012), 289-298.
  • [26] Muñoz, G. D. et al. 2018. Chapter 11 - Anthraquinones: An Overview, Studies in Natural Products Chemistry, 58(2018), 313-338.
  • [27] Kremer, D., et al. 2012. Anthraquinone profiles, antioxidant and antimicrobial properties of Frangula rupestris (Scop.) Schur and Frangula alnus Mill. Bark. Food Chemistry, 131(2012), 1174–1180.
  • [28] Tebrencu, C. E., et al. 2015. Phytochemical evaluation and HPTLC investigation of bark and extracts of Rhamnus Frangula Linn. Phytochemistry Reviews, 14(2015), 613-621.
  • [29] Gonçalves, R. S., et al. 2018. An optimized protocol for anthraquinones isolation from Rhamnus frangula L. Natural Product Research, 32(2018), 366-369.
  • [30] Mueller, S. O., et al. 1999. Occurrence of Emodin, Chrysophanol and Physcion in Vegetables, Herbs and Liquors. Genotoxicity and Anti-genotoxicity of the Anthraquinones and of the Whole Plants. Food and Chemical Toxicology, 37(1999), 481-491.
  • [31] Andersen, D. O., et al. 1991. In vitro virucidal activity of selected anthraquinones and anthraquinone derivatives. Antiviral Research, 16(1991), 185-196.
  • [32] Agarwal, S. K., et al. 2000. Antifungal activity of anthraquinone derivatives from Rheum emodin. Journal of Ethnopharmacology, 72(2000), 43-46.
  • [33] Sydiskis, R. J., et al. 1991. Inactivation of enveloped viruses by anthraquinones extracted from plants. Antimicrobial Agents Chemotherapy, 35(1991), 2463-2466.
  • [34] Zhou, X. M., Chen, Q. H. 1988. Biochemical study of Chinese rhubarb XXII. Inhibitory effect of anthraquinone derivatives on sodium-potassium-ATPase of a rabbit renal medulla and their diuretic action. Acta Pharmaceutica Sinica B, 23(1988), 17-20.
  • [35] Koyama, M., Kelly, T. R., Watanabe, K. A. 1988. Novel type of potential anticancer agents derived from crysophanol and emodin. Journal of Medicinal Chemistry, 31(1988), 283-284.
  • [36] Zhang, L., Hung. M. C. 1996. Sensitization of HER-2/neu-overexpressing non-small cell lung cancer cells to chemotherapeutic drugs by tyrosine kinase inhibitor emodin. Oncogene, 12(1996), 571-576.
  • [37] Zhang, L., Chang, C. J., Bacus, S. S., Hung, M. C. 1995. Suppressed transformation and induced differentiation of HER-2/neu-overexpressing breast cancer cells by emodin. Cancer Research, 55(1995), 3890-3896.
  • [38] Zhang, L., et al. 1998. Tyrosine kinase inhibitor, emodin and its derivative repress HER-2/neu-induced cellular transformation and metastasis-associated properties. Oncogene, 16 (1998), 2855-2863.
  • [39] Huang, Q., et al. 2007. Anti-cancer properties of anthraquinones from rhubarb. Medicinal Resarch Reviews, 27(2007), 609-630.
  • [40] Benli, H., Bahtiyari, M. I. 2015 (b). Combination of ozone and ultrasound in pretreatment of cotton fabrics prior to natural dyeing. Journal of Cleaner Production, 89 (2015), 116-124.
  • [41] DIN 53924, 1997. Testing of Textiles e Velocity of Soaking Water of Textile Fabrics (Method by Determining the Wicking Height). Deutsches Institut Fur Normung E.V, Berlin, 1997.
  • [42] McDonald, R., 1997. Recipe prediction for textiles, McDonald R., ed. 1997, Colour physics for industry (2nd Edition), Society of Dyers and Colourists, Bradford, England.
  • [43] ISO 105-B02:1994, Textiles–Tests for color fastness, Part B02: Color fastness to artificial light, International Organization for Standardization, Brussels, Belgium
  • [44] ISO 105-C10:2006, Textiles–Tests for color fastness - Part C10: Color fastness to washing with soap or soap and soda, Test Condition: Test A (1), International Organization for Standardization, Geneva, Switzerland
  • [45] ISO 105-X12:1993, Textiles–Tests for color fastness, Part X12: Color fastness to rubbing, International Organization for Standardization, Geneva, Switzerland
  • [46] ISO 105-E04:1994, Textiles–Tests for color fastness, Part E04: Color fastness to perspiration, International Organization for Standardization, Brussels, Belgium
  • [47] Vankar, P.S. 2000. Chemistry of natural dyes. Resonance, (2000),73-80.
  • [48] Vargas, F., Rivas, C., Medrano, M. 2004. Interaction of Emodin, Aloe-Emodin, and Rhein with Human Serum Albumin: A Fluorescence Spectroscopic Study. Toxicology Mechanisms and Methods, 14(2004), 227-231.
  • [49] Cristea, D., Vilarem, D. 2006. Improving light fastness of natural dyes on cotton yarn. Dyes and Pigments, 70 (2006), 238-245.