GENERATION OF SILK FIBROIN-CA-P COMPOSITE BIOMIMETIC BONE REPLACEMENT MATERIAL USING ELECTROCHEMICAL DEPOSITION

GENERATION OF SILK FIBROIN-CA-P COMPOSITE BIOMIMETIC BONE REPLACEMENT MATERIAL USING ELECTROCHEMICAL DEPOSITION

Mineralized natural protein based novel bone replacement materials are investigated for tissue engineering. Mineralized silk fibroin composite foams and films display excellent biocompatibility. In this study, the biomimetic and electrochemical mineralization of orderly oriented silk fibroin scaffolds was studied. Commercially obtained pure silk woven fabric was boiled in 0.02 M Na2CO3 for 20 min. Calcium phosphate was deposited at 37°C for twenty minutes in seven sequential immersion steps, using 250 mM CaCl2 2H2O and 120 mM K2HPO4, containing 0.15 M NaCl and 50mM TRIS-HCl, pH 7.4, followed by electrochemical treatment in modified SBF solution at 40°C at a current density of -25mA/cm2 for 60 min. The amount of biomimetically deposited Ca-P increased with the number of immersion steps. SEM images and XRD analysis of the Ca-P deposit indicated the initial formation of brushite with its monoclinic crystal structure and characteristic peak at 11.76 2θ, and electrochemical conversion of brushite to hydroxyapatite on silk after electrochemical cathodization as confirmed by XRD and SEM analysis. Thus, a silk-fibroin-hydroxyapatite composite material prepared as a xenograft consisting of biocompatible components, and easily prepared as an economical bone segment replacement material with highly oriented fibers.

___

  • [1] J. D. Currey, “Bones: Structure and Mechanics”, Princeton University Press, Princeton, NJ, 2002.
  • [2] F. S. Utku et al., “Probing the role of water in lamellar bone by dehydration in the Environmental Scanning Electron Microscope,” J Struct. Biol., vol. 162, pp. 361-367, June 2008.
  • [3] G. J. Meijer, J. D. de Bruijn, R. Koole, C. A van Blitterswijk, “Cell-based bone tissue engineering,” PLoS Med., vol. 4, pp. 260-264, June 2007.
  • [4] T. Kokubo, H. M. Kim, M. Kawashita, T. Nakamura, “Bioactive metals: preparation and properties,” J. Mat. Sci. Mater. Med. vol. 15, pp. 99-107, Feb. 2004.
  • [5] F. S. Utku, E. Karaca, E. Seckin, G. Goller, M. Urgen, C. Tamerler, “The effect of the topographical and chemical properties of titanium implants on osteoblasts,” in Proceedings of the National Congress of Medical Technologies, Antalya, Turkey, Nov. 1-3, 2012.
  • [6] J. W. M. Vehof, J. Dolder, E. Ruijter, P. H. M. Spauwen, J. A. Jansen, “Bone formation in CaP-coated and noncoated titanium fiber mesh,” J Biomed Mater Res. vol. 64A, pp. 417–26, March 2003.
  • [7] R. Z. LeGeros, “Properties of osteoconductive biomaterials: calcium phosphates,” Clin Orthop Relat Res. vol. 395, pp. 81–98, Feb. 2002.
  • [8] P. X. Ma, R. Zhang, G. Xiao, R. Franceschi, “Engineering new bone tissue in vitro on highly porous poly(α-hydroxy acids)/hydroxyapatite composite scaffolds,” J Biomed Mater Res, vol. 54, pp. 284–93, Feb. 2001.
  • [9] L. B. Rocha, G. Goissis, M. A. Rossi, “Biocompatibility of anionic collagen matrix as scaffold for bone healing,” Biomaterials, vol. 23, pp. 449–56, Jan. 2002.
  • [10]U. J. Kim, J. Park, H. J. Kim, M. Wada, D. L. Kaplan, “Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin,” Biomaterials, vol.26, pp. 2775–85, June 2005.
  • [11]Y. Wang, U-J. Kim, D. J. Blasioli, H. J. Kim, D. L. Kaplan, “In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells,” Biomaterials, vol.26, pp. 7082–94, Dec. 2005.
  • [12]S. Sofia, M. B. McCarthy, G. Gronowicz, D. L. Kaplan, “Functionalized silk-based biomaterials for bone formation,” J Biomed Mater Res.vol.54, pp. 139–48, Jan. 2001.
  • [13]G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. Chen, H. Lu, J. Richmond, D. L. Kaplan, “Silk-based biomaterials,” Biomaterials, vol.24, pp. 401–16, Feb. 2003.
  • [14]B. Panilaitis, G. H. Altman, J. Chen, H. J. Jin, V. Karageorgiou, D. L. Kaplan, “Macrophage responses to silk,” Biomaterials, vol.24, pp. 3079–85, Aug. 2003.
  • [15]R. Nazarov, H. J. Jin, D. L. Kaplan, “Porous 3-D scaffolds from regenerated silk fibroin,” Biomacromolecules, vol.5, pp. 718–26, May-June 2004.
  • [16]L. Addadi, S. Weiner, “Interactions between acidic proteins and crystals: stereo-chemical requirements in biomineralization,” Proc Natl Acad Sci, vol.82, pp. 4110–4, June 1985.
  • [17]R. Zhang, P. X. Ma, “Poly(α-hydroxy acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology,” J Biomed Mater Res. vol.44, pp. 446–55, Sept. 1998.
  • [18]F. S. Utku, E. Yuca, E. Seckin, G. Goller, A. Yazgan-Karatas, M. Urgen, C. Tamerler, “Protein-mediated hydroxyapatite composite layer formation on nanotubular titania,” Bioinspired, Biomimetic and Nanobiomaterials, vol.4, pp. 1–11, Sept. 2015.
  • [19]F. S. Utku, E. Seckin, G. Goller, C. Tamerler, M. Urgen, “Carbonated Hydroxyapatite deposition at physiological temperature on ordered titanium oxide nanotubes using pulsed electrochemistry,” Ceramics International, vol.40, pp. 15778-15789, Dec. 2014.
  • [20]H. J. Kim, U-J. Kim, H. S. Kim, C. Li, M. Wadag, G.G. Leisk, D.L. Kaplan, “Bone tissue engineering with premineralized silk scaffolds,” Bone, vol.42, pp. 1226–1234, Mar. 2008.
  • [21]R. R. Kumar, M. Wang, “Biomimetic deposition of hydroxyapatite on brushite single crystals grown by the gel technique,” Materials Letters, vol.49, pp. 15–19, May 2001.
  • [22]K. S. Kar, S. Raja, M. Misra, “Electrodeposition of hydroxyapatite onto nanotubular TiO2 for implant applications,” Surf. Coat. Tech., vol.201, pp. 3723-3731, Dec. 2006.
Electrica-Cover
  • ISSN: 2619-9831
  • Başlangıç: 2001
  • Yayıncı: İstanbul Üniversitesi-Cerrahpaşa