Tümüyle Elektrikli Binek Tipli Bir Araçta Yuvarlanma Direnci Değişiminin İvmelenme Performansı ve Transmisyon Kayıplarına Etkisi Üzerine Bir Çalışma

Elektrikli araçların günümüzde halen istenilen düzeyde kullanılmamasının en önemli sebebi sınırlı menzilleridir. Elektrikli araçların menziline etki eden en önemli faktörlerden birisi yuvarlanma direnci etkisidir. Lastik tasarımına ve çevresel koşullara bağlı olarak değişebilen yuvarlanma direnç kuvveti değişimi fren ve batarya performansıyla birlikte menzili de etkilemektedir. Bu çalışmada binek tipli tümüyle elektrikli bir araç için ADVISOR taşıt simülasyon programı kullanılarak iki farklı yuvarlanma direncinde elektrikli taşıtın ivmelenme ve transmisyon kayıpları incelenmiştir. Sürüş çevrimine göre ortalama yuvarlanma direnç kuvvetleri arasında 2.1 kat fark meydana gelmiştir. Düşük yuvarlanma dirençli lastiklerin hızlanma süresi 0-96.6 km/h hızlar arasında 0.4 saniye, 64.4-96.6 km/h hızlar arasında 0.2 saniye, 0-137 km/h hızlar arasında ise 0.5 saniye azalmıştır. Ayrıca frenleme enerjisi düşük yuvarlanma dirençli lastiklerde % 7.3 daha fazla meydana gelmiştir.

A Study on the Effect of Rolling Resistance Change on Acceleration Performance and Transmission Losses in An All-Electric Passenger Type Vehicle

The most important reason of electric vehicles are still not being used at the desired level today is their limited range. One of the most important factors affecting the range of electric vehicles is the rolling resistance effect. The change in rolling resistance force, which can vary depending on tire design and environmental conditions, affects the range along with brake and battery performance. In this study, rolling resistance force change, SOC status and battery recovery has been examined in 2 different rolling resistance using the ADVISOR vehicle simulation program for an all-electric vehicle of passenger type There has done a 2.1 times difference between the average rolling resistance forces according to the driving cycle. With low rolling resistance tire acceleration time on has reduced by 0.4 seconds between speeds of 0-96.6 km/h, 0.2 seconds between speeds of 64.4-96.6 km/h, and 0.5 seconds between speeds of 0-137 km/h. In addition, braking energy has been 7.3% higher at low rolling resistance tire.

___

  • [1] Kunt, M.A., “Tümüyle Elektrikli Binek Tipli Bir Aracın Advisor Tabanlı Modellenmesi Ve Aerodinamik Direnç Değişiminin Batarya Performansına Etkisi Üzerine Bir Çalışma”, ISASTECH 2019, 5-6 Eylül 2019, Ankara, Türkiye.
  • [2] Huang Q., Li J., Chen Y., Control of Electric Vehicle. Urban Transport and Hybrid Vehicles, InTech, Chengdu. 2010.
  • [3] Yuan X., Li L., Gou H. and Dong T. “Energy and environmental impact of battery electric vehicle range in China”, Applied Energy, 2015, 157: 75-84.
  • [4] SAE Standartları Testleri. https://www.eurolab.com.tr/sektorel-test-ve-analizler/endustriyel-testler/sae-standartlari-testleri. 19.09.2019.
  • [5] Tat, M.A., Özenç, F., “Otomobil lastiklerinde yuvarlanma direncini etkileyen faktörlerin ve standart yuvarlanma direnci ölçüm tekniklerinin incelenmesi”, Mühendis ve Makine, 2007, 48(572): 16-72.
  • [6] Guzzela L., Sciarretta A., Vehicle Propulsion Systems, Springer, Second Edition, USA, 2007.
  • [7] Kunt M.A., “Advisor based modelling of the effect of rolling resistance on regenerative braking in all-electric passenger cars”, El-Cezerî Journal of Science and Engineering, 2019, 6(3): 847-855.
  • [8] Nokian Tyres plc, Finland, European Tyre School Project. Supported by Leonardo da Vinci Programme of European Commision. www.tut.fi/plastics/tyreschool/index.html.
  • [9].Trb special report 286 – tires and passenger vehicle fuel economy. Transp ResBoard 2006.
  • [10] Sorrentino M., Rizzo G., Sorrentino L., “A study aimed at assessing the potential impact of vehicle electrification on grid infrastructure and road-traffic green house emissions”, Applied Energy, 2014, 120: 31–40.
  • [11] Millo F., Rolando L., Fuso R., Mallamo F., “Real CO2 emissions benefits and end user’s operating costs of a plug-in hybrid electric vehicle”, Applied Energy, 2014, 114: 563–71.
  • [12] Husain I., Islam M.S. Design, modeling and simulation of an electric vehicle system, SAE, SAE Technical Paper No. 1999-01-1149, 1999.
  • [13] Markel T., Brooker A., Hendricks T., Johnson V., Kelly K., Kramer B., et al., “ADVISOR: a systems analysis tool for advanced vehicle modelling”, Journal of Power Sources, 2002, 110: 255-66.
  • [14] Xu J.W., Zheng L., Simulation and analysis of series hybrid electric vehicle (SHEV) based on ADVISOR, International Conference on Measuring Technology and Mechatronics Automation, Changsha City, China, 13-14 March 2010, 1312-1321.
  • [15] Kaloko B.S., Soebagio M.H.P., Purnomo M.H., “Design and development of small electric vehicle using MATLAB/Simulink”, International Journal of Computer Applications, 2011, 24: 19-23.
  • [16] Schaltz E., “Electrical Vehicle Design and Modeling”, Electric Vehicles - Modelling and Simulation, InTech, Shanghai, 2011.
  • [17] Mapelli F.L., Tarsitano D., “Modeling of Full Electric And Hybrid Electric Vehicles”, New Generation of Electric Vehicles, INTECH Open Access Publisher, 2012.
  • [18] Rashid M.I.M., Danial H., “ADVISOR simulation and performance test of split plug-in hybrid electric vehicle conversion”, Energy Procedia, 2017, 105: 1408–1413.
  • [19] Suvak H., Erşan K., “The simulation of a full electric vehicle using the city cycle”, International Journal of Automotive Engineering and Technologies, 2016, 5(2): 38-46.
  • [20] Brooker A., Haraldsson K., Hendricks T., Johnson V., Kelly K., Kramer B., Markel T., O'Keefe M., Sprik S., Wipke K., Zolot M., ADVISOR Documentation, National Renewable Energy Laboratory (NREL), April 2002.
  • [21] Wipke K. B., Cuddy M. R., Burch S., “ADVISOR 2.1: A User-friendly advanced power train simulation using a combined backward/forward approach”, IEEE Transactıons on Vehicular Technology, 1999, 48(6): 1751-1761.