Toz Metalurjisi ile Üretilen Saf Al Malzemenin Farklı Sinterleme Sıcaklıklarının Mikro yapı ve Mekanik Özelliklerine Etkisi

Bu çalışmada, günümüzde hafif malzemelere olan ihtiyacın artması nedeniyle toz metalürjisi yöntemi ile Al üretimi yapılarak, sinterleme parametrelerinin üretilen malzeme üzerindeki etkileri araştırılmıştır. Bu araştırma sırasında ticari olarak elde edilen % 99 saflıkta ve 180 µm boyutlarındaki Al tozu ön ısıtma işleminden geçirilerek özel olarak hazırlanmış kalıp içerisine yerleştirilmiştir. Üst zımba vasıtasıyla kalıp içerisinde 500 MPa basınç ile sıkıştırılan Al tozu iç içe geçmiş konik kalıptan çıkartılarak sinterleme işlemi için hazır hale getirilmiştir. Doğru sinterleme sıcaklığı ve zamanının belirlenebilmesi için sıkıştırılmış numuneler sırasıyla 500, 550 ve 600 oC sıcaklıklarda ve her bir sıcaklık değeri için 45, 60 ve 75 dk sürelerde ayrı ayrı sinterlenmiştir. Sinterleme işlemi sonrasında elde edilen her bir numunenin mikro yapı incelemeleri, mikro sertlik testleri ve yoğunluk deneyleri yapılarak belirlenen sıcaklık değerlerindeki en iyi sinterleme süreleri ve bu sürelerin numunelerde meydana getirdiği değişimler tespit edilmiştir. Üç ayrı sıcaklık değeri için tespit edilen sinterleme sürelerinde hazırlanan numuneler, çekme testine tabi tutularak elde edilen sonuçların tamamı bir araya getirilip saf Al için en iyi sinterleme parametresi belirlenmiştir.
Anahtar Kelimeler:

Toz Metalurjisi, Sinterleme, Saf Al

Effect of Different Sintering Temperatures on Microstructure and Mechanical Properties for Pure Al Material Produced by Powder Metallurgy

Addressing the need for light materials in today’s industry, the present study aims to analyze the effects of sintering parameters on pure Al material manufactured using powder metallurgy technique. 99% pure and commercially obtained Al powder at a dimension of 180 µm was subjected to pre-heating and placed in a specially designed die. Al powder was compacted into a die using an upper punch with 500 MPa pressure and later removed from conical die for the sintering process. In order to find the optimal sintering temperature and duration, the compacted samples were sintered separately at 500oC, 550oC and 600oC for 45, 60 and 75 minutes for each temperature value. Microstructural analysis, microhardness test and density test of each sample obtained from the sintering process were performed to determine the most optimal sintering durations at a given temperature, and changes caused during these processes were observed. Finally, the samples obtained in different sintering durations for three different temperatures were subjected to a tensile test. The findings of all tests were analyzed to calculate the most optimal sintering parameters for pure Al.

___

  • 1. Liu J., Silveira J., Groarke R., Parab S., Singh H., Mccarthy E., "Effect of powder metallurgy synthesis parameters for pure aluminium on resultant mechanical properties", Int J Mater Form. 2019;12:79–87.
  • 2. Yehia HM., "Electrochemical Surface Modification of Aluminum Sheets Prepared by Powder Metallurgy and Casting Techniques for Printed Circuit Applications", Trans Indian Inst Met. 2019;72(1):85–92.
  • 3. Tang F., Anderson IE., Biner SB., "Solid state sintering and consolidation of Al powders and Al matrix composites", J Light Met. 2002;2(4):201–14.
  • 4. Avci U., Temiz S., "Determination of Remanufacturing Parameters of Al7039 Armor Alloy" El-Cezeri Fen ve Mühendislik Derg. 2020;7(1):135–148.
  • 5. Yılmaz Ş., Delİkanli E., "The Effect of Precipitation Hardening on Mechanical Properties of Aluminium Alloy AA2024", SDU J Tech Sci. 2012;2(4):13–20.
  • 6. Yu BC., Bae KC., Jung JK., Kim YH., Park YH., "Effect of Heat Treatment on the Microstructure and Wear Properties of Al–Zn–Mg–Cu/In-Situ Al–9Si–SiCp/Pure Al Composite by Powder Metallurgy", Met Mater Int. 2018;24(3):576–85.
  • 7. Rahimian M., Parvin N., Ehsani N., "Investigation of particle size and amount of alumina on microstructure and mechanical properties of Al matrix composite made by powder metallurgy", Mater Sci Eng A. 2010;527(4–5):1031–8.
  • 8. Bardi F., Cabibbo M., Evangelista E., Spigarelli S., Vukčevič M., "An analysis of hot deformation of an Al-Cu-Mg alloy produced by powder metallurgy", Mater Sci Eng A. 2003;339(1–2):43–52.
  • 9. Shongwe BM., Olubambi PA., "Influence of sintering methods on the mechanical properties of aluminium nanocomposites reinforced with carbonaceous compounds : A review", Integr Med Res. 2019;8(2):2432–49.
  • 10. Nogueira A., Dias O., "Analysis of the densification of a composite obtained by sintering process of aluminium bronze powders with different carbides", Metall Mater. 2019;72(3):461–7.
  • 11. Eksi AK. "Investigation of mechanical properties before and after sintering of cold isostatically pressed metallic powders", Kov Mater. 2006;44:191–8.
  • 12. Sinha A., Farhat Z., "Effect of Surface Porosity on Tribological Properties of Sintered Pure Al and Al 6061", Materials Science and Applications. 2015; 6: 549–66.
  • 13. Herzallah H., Elsayd A., Shash A., Adly M., "Effect of carbon nanotubes ( CNTs ) and silicon carbide ( SiC ) on mechanical properties of pure Al", Integr Med Res. 2020; 9(2):1948–1954.
  • 14. Li YY., Ngai TL., Zhang DT., Long Y., Xia W., "Effect of die wall lubrication on warm compaction powder metallurgy", 2002;129:354–8.
  • 15. Ladelpha ADP., Neubing H., Bishop DP., "Metallurgical assessment of an emerging Al – Zn – Mg – Cu P / M alloy", 2009;520:105–13.
  • 16. Mello JDB De., Binder R., Klein AN., Hutchings IM., Binder R., Klein AN., et al. "Effect of compaction pressure and powder grade on microstructure and hardness of steam oxidised sintered iron", Powder Metall. 2013;5899(44:1):53–61.
  • 17. Salahinejad E., Amini R., Marasi M., Jafar M., "The effect of sintering time on the densification and mechanical properties of a mechanically alloyed Cr – Mn – N stainless steel", Mater Des. 2010;31(1):527–32.
  • 18. Rahimian M., Ehsani N., Parvin N., Baharvandi H., "The effect of particle size, sintering temperature and sintering time on the properties of Al-Al2O3 composites, made by powder metallurgy", J Mater Process Technol. 2009;209(14):5387–93.
  • 19. Sobhani M., Ebadzadeh T., Rahimipour M.R. "Formation and densification behavior of reaction sintered alumina 20 wt .% aluminium titanate nano-composites". Int. Journal of Refractory Metals and Hard Materials. 2014;47:49–53.