Testing of System Performance for Different Aerator Configuration Using Venturi

A venturi tube or pipe part or device allows air bubbles to be inserted into flowing water from air inlet holes and so increases dissolved oxygen (DO) levels in water. Therefore, the aim of this paper is to evaluate system design and experimental results related to configuration of venturi tube in air vacuum and aeration process. Different aerator modules constructed using venturi tubes  connected in either single or double in parallel (with single or double outlet pipe line) were evaluated and compared for their air flowrate, vacuum capacity, oxygen transfer coefficients (OTC), standard oxygen transfer rate (SOTR), and standard oxygenation efficiency (SOE) determined by clean water tests. The experimental results indicated that the double parallel design (connected to a single outlet pipe line) generally performed better than the single and double parallel (connected to a double outlet pipe line) design in terms of transferring oxygen into water.

Venturi Havalandırıcı Konfigrasyonu İçin Sistem Performansının Test Edilmesi

Bir venturi tüpü veya boru parçası veya aygıtı, atmosferdeki havanın venturi hava girişi deliklerinden boru akımına geçişini sağlar ve böylece sudaki çözünmüş oksijen (ÇO) seviyelerini arttırır. Bu deneysel çalışmanın amacı venturi ile havalandırma sisteminde venturi boru parçasının konfigürasyonu ile ilgili en verimli sistem tasarımını yapmak ve elde edilen deney sonuçları değerlendirmektir. Tekli veya çiftli paralel (tekli veya çift çıkış boru hattı ile) bağlanan venturi tüpleri kullanılarak sistemi kurulan farklı havalandırma modülleri; hava akış hızı, vakum kapasitesi, oksijen transfer katsayıları (OTK), standart oksijen transfer hızı (SOTH) ve standart oksijenleme etkinliği (SOE) temiz su testleri ile belirlendi. Elde edilen deneysel sonuçlar göre, çiftli paralel tasarımın (tek bir çıkış borusuna bağlı olarak) genel olarak çözünmüş oksijenin suya aktarımı açısından tek ve çiftli paralelden (çift çıkışlı boru hattına bağlı) daha iyi performans gösterdiği gözlemlendi

___

  • [1] Bagatur, T.(2005) Technical note: Minimal conditions for venturi aeration of water flows. Proc. Inst. Civ. Eng. Water Management, 158 (WM3), 127-130 [2] Bagatur, T.(2014) Evaluation of plant growth with aerated irrigation water using venturi pipe part. Arab. J. Sci. Eng. 39 (4), 2525-2533
  • [3] Baylar, A.,Emiroglu, M.E. (2003)Air entrainment and oxygen transfer in a venturi. Proc. Inst. Civ. Eng. Water, Marit., Energy, 156 (WM3), 249-255 [4] Emiroglu, M.E.; Baylar, A.(2003) Study of the influence of air holes along length of convergent-divergent passage of a venturi device on aeration. J. Hydr. Res., 41 (5) 513-520 [5] Baylar, A., Ozkan, F., Ozturk, M.(2005) Influence of venturi cone angles on jet aeration systems. Proc. Inst. Civ. Eng. Water Management, 158 (WM1), 9-16 [6] Ozkan, F., Ozturk, M., Baylar, A.(2006) Experimental investigations of air and liquid injection by venturi tubes", Water and Envir. J., 20 (3) 114-122
  • [7] Baylar, A., Ozkan, F. (2006) Applications of venturi principle to water aeration systems.Environ. Fluid Mechanics, 6 (4) 341–357 [8] Baylar, A., Ozkan, F., Unsal, M.(2007)On the use of venturi tubes in aeration. CLEAN - Soil, Air, Water, 35 (2) 183-185 [9] Baylar, A.,Unsal, M., Ozkan, F. (2007) Determination of the optimal location of the air hole in venturi aerators. CLEAN - Soil, Air, Water, 35 (3) 246-249 [10] Baylar, A., Ozkan, F., Unsal, M. (2010) Effect of air inlet hole diameter of venturi tube on air injection rate.KSCE Journal of Civil Engin. 14(4):489-492 [11] Zhu, J., Miller, CF., Dong, C. (2007) Aerator module development using venturi air injectors to improve aeration efficiency, Applied Eng. Agricul., 23, 661–667 [12] Dong, C., Zhu, J., Miller, C.F. (2009) Aeration efficiency influenced by venturi aerator arrangement, liquid flow rate and depth of diffusing pipes. Envir. Tech. 60(5), 1353-1359[13] Dong C., Zhu J., Miller C. F (2012) Evaluation of six aerator modules built on venturi air injectors using clean water test. Water Sci Technol. 33(11), 1289-1298[14] Daugherty, R.L.,Franzini, J.B.,Finnemore, E.J.(1985) Fluid Mechanics with Engineering Applications. McGraw-Hill, New York
  • [15] Vogelaar, J.C.,Klapwijk, T.A., Lier, J, Rulkens, W.(2000)Temperature effects on the oxygen transfer rate between 20 and 55 °C, Water Res. 34, 1037–1041 [16] APHA (1980) Standard Methods for the examination of water and wastewater. American Public Health Association, Washington, DC.[17] Benson, B.B., Krause, D. (1984) The concentration and isotopic fractionation of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere. Limnol. Oceanogr. 29, 620-632 [18] Boyd, C.E. (1998) Pond water aeration systems. Aquacultural Eng., 18, 9-40[19] ASCE (1992) Standard Measurement of Oxygen Transfer in Clean Water. American Society of Civil Engineering, New York.
El-Cezeri-Cover
  • ISSN: 2148-3736
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2013
  • Yayıncı: Tüm Bilim İnsanları ve Akademisyenler Derneği