Satellite Tracking Control System Using Optimal Variable Coefficients Controllers Based on Evolutionary Optimization Techniques

Satellite Tracking Control System Using Optimal Variable Coefficients Controllers Based on Evolutionary Optimization Techniques

Satellite tracking control system is mechanism that redirects the parabolic antenna to the chosen satellite automatically. It perfectly tracks the satellite as it spins across the sky in its orbit. To maintain a continuous communication signal throughout multiple satellite tracking missions, the tracking process must be fast and smooth, with minimal deviations from the target position. Various controller models have been presented over time to address the problem of antenna positioning in satellite systems and to track moveable targets using servomechanism. The purpose of this study is to describe and debate a satellite tracking control system based on a DC servo motor. For optimal tuning of Proportional-Integral-Derivative (PID), Fractional Order PID (FOPID) and Variable Coefficient Fractional Order PID (V-FOPID) controllers that were used in satellite control system, Particle Swarm Optimization (PSO), Gravitational Search Algorithm with Particle Swarm Optimization (GSA-PSO) and Eagle Strategy with Particle Swarm Optimization (ES-PSO) techniques were proposed. Dynamic Performance Indices Based Objective Functions is used to compute the Performance Index. Furthermore, Self-Tuning Fuzzy FOPID (STF-FOPID) is proposed for satellite tracking control system. The system's response is analyzed, and the outcomes of various control strategies are measured and compared to others. The obtained results implies that Variable Coefficient Fractional Order PID controller tuned using Eagle Strategy with Particle Swarm Optimization can precisely trace the desired position with the fastest settling time and free overshoot when compared to other control strategies.

___

  • [1]. M. Shweta et al., “Satellite Dish Positioning System,” IJIRST-International J. Innov. Res. Sci. Technol., vol. 4, 2017, [Online]. Available: www.ijirst.org.
  • [2]. A. Uthman and S. Sudin, “Antenna Azimuth Position Control System Using PID Controller & State-Feedback Controller Approach,” Int. J. Electr. Comput. Eng., vol. 8, no. 3, pp. 1539-1550, 2018. doi: 10.11591/ijece.v8i3.pp1539-1550.
  • [3]. T. Yamaoka, A. Ming, T. Kida, C. Kanamori, and M. Satoh, “Accuracy Improvement of Ship Mounted Tracking Antenna for Satellite Communications,” Nihon Kikai Gakkai Ronbunshu, C Hen/Transactions Japan Soc. Mech. Eng. Part C, vol. 73, no. 1, pp. 170-176, 2007. doi: 10.1299/kikaic.73.170.
  • [4]. A. Mahmood, A. Abdulla, and I. Mohammed, “Helicopter Stabilization Using Integer and Fractional Order PID Controller Based on Genetic Algorithm,” Proceedings of the 1st International Multi-Disciplinary Conference Theme: Sustainable Development and Smart Planning, IMDC-SDSP, Cyperspace, 28-30 June 2020. doi: 10.4108/eai.28-6-2020.2297914.
  • [5]. Y. Zhang, S. Wang, and G. Ji, “A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications,” Math. Probl. Eng., 2015, doi: 10.1155/2015/931256.
  • [6]. S. Mirjalili and S. Z. M. Hashim, “A New Hybrid PSOGSA Algorithm for Function Optimization,” Proc. ICCIA 2010 - 2010 Int. Conf. Comput. Inf. Appl., no. 1, pp. 374-377, 2010, doi: 10.1109/ICCIA.2010.6141614.
  • [7]. H. Yapici and N. Çetinkaya, “An Improved Particle Swarm Optimization Algorithm Using Eagle Strategy for Power Loss Minimization,” Math. Probl. Eng., 2017, doi: 10.1155/2017/1063045.
  • [8]. B. Ataşlar Ayyıldız and O. Karahan, “Controller Tuning Approach With Tlbo Algorithm for the Automatic Voltage Regulator System,” Eskişehir Tech. Univ. J. Sci. Technol. A - Appl. Sci. Eng., vol. 21, no. 1, pp. 128-146, 2020. doi: 10.18038/estubtda.581895.
  • [9]. N. S. Nise, Control Systems Engineering, Sixth Edit. California State Polytechnic University, Pomona: John Wiley & Sons, Inc., 2000.
  • [10]. P. Routray, “Dynamic Modelling of DC Motor and Simulation.” pp. 15, 2010.
  • [11]. S. Javiya and A. Kumar, “Comparisons of Different Controller for Position Tracking of DC Servo Motor,” Int. J. Adv. Res. Electr. Electron. Instrum. Eng. An ISO, vol. 3297, no. 2, pp. 966-974, 2007. doi: 10.15662/IJAREEIE.2016.0502058.
  • [12]. L. Xuan, J. Estrada, and J. Digiacomandrea, “Antenna Azimuth Position Control System Analysis and Controller Implementation,” 2009.
  • [13]. K. Corporation, “Kollmorgen AKM Servomotor Selection Guide with AKD Servo Drive Systems.” Kollmorgen Corporation., pp. 1-72, 2010. [Online]. Available: https://www.kollmorgen.com/en-us/products/catalogs/kollmorgen-akm-servomotor-selection-guide/.
  • [14]. K. J. Åström and T. Hägglund, PID Controllers: Theory, Design, and Tuning, 2nd Editio., vol. 2, 1995.
  • [15]. M. El-Sayed M. Sakr and M. A. Moustafa Hassan, “Satellite Tracking Control System Using Different Optimal Controllers Based on Evolutionary Optimization Techniques,” Journal of Research in Engineering and Applied Sciences(JREAS), vol. 7, no. 1, pp. 226-249, 2022. doi: 10.46565/jreas.2022.v07i01.004.
  • [16]. I. Podlubny, “Fractional-Order Systems and PI/Sup /Spl Lambda//D/Sup /Spl Mu//-Controllers,” IEEE Trans. Automat. Contr., vol. 44, no. 1, pp. 208-214, 1999. doi: 10.1109/9.739144.
  • [17]. D. Maiti, S. Biswas, and A. Konar, “Design of a Fractional Order PID Controller Using Particle Swarm Optimization Technique,” ReTIS-08, pp. 1-5, 2008. [Online]. Available: http://arxiv.org/abs/0810.3776.
  • [18]. Q. Gao, K. Li, Y. Hou, R. Hou, and C. Wang, “Balancing and Positioning for a Gun Control System Based on Fuzzy Fractional Order Proportional-Integral-Derivative Strategy,” Adv. Mech. Eng., vol. 8, no. 3, pp. 1-9, 2016. doi: 10.1177/1687814016639854.
  • [19]. M. Al-Dhaifallah, N. Kanagaraj, and K. S. Nisar, “Fuzzy Fractional-Order PID Controller for Fractional Model of Pneumatic Pressure System,” Math. Probl. Eng., 2018. doi: 10.1155/2018/5478781.
  • [20]. O. Aydogdu and M. Korkmaz, “Optimal Design of a Variable Coefficient Fractional Order PID Controller by Using Heuristic Optimization Algorithms,” Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 3, pp. 314-321, 2019. doi: 10.14569/IJACSA.2019.0100341.
  • [21]. D. Bratton and J. Kennedy, “Defining a Standard for Particle Swarm Optimization,” Proc. 2007 IEEE Swarm Intell. Symp. SIS 2007, pp. 120-127, 2007, doi: 10.1109/SIS.2007.368035.
  • [22]. X. S. Yang, S. Deb, and X. He, “Eagle Strategy with Flower Algorithm,” Proc. 2013 Int. Conf. Adv. Comput. Commun. Informatics, ICACCI 2013, pp. 1213-1217, 2013. doi: 10.1109/ICACCI.2013.6637350.