Sargı Donatısı ve Eksenel Yük Seviyesinin Betonarme Kolonların Eğrilik Süneklik ile Etkin Kesit Rijitliğe Etkisi

Betonarme elemanların eğrilik sünekliğinin doğru tahmini, sismik yükler altında binaların kapasitesinin güvenilir bir tahminini sağladığı için her zaman çekici bir çalışma konusu olmuştur. Bu çalışmada; malzeme modelinin, eksenel yükün ve sargı donatı oranının betonarme kolonların davranışı üzerindeki etkisi analitik olarak araştırılmıştır. Kare kesitli kolon modelleri tasarlanmıştır. Kolonların davranışı, malzemelerin doğrusal olmayan davranışı dikkate alınarak moment-eğrilik ilişkisinden değerlendirilmiştir. Betonarme kolonların farklı eksenel yük seviyeleri ve sargı donatı oranları için moment eğrilik ilişkileri Mander modeli dikkate alınarak elde edilmiştir. Parametrelerin kolon davranışı üzerindeki incelenen etkileri kesitin mukavemeti, süneklik ve etkin rijitlik açısından değerlendirilmiştir. Tasarlanan betonarme kolon kesitlerde, farklı parametrelerin moment eğrilik ilişkisi, sünekliği ve etkin rijitlik üzerindeki etkisi hesaplanarak karşılaştırılmıştır. Eksenel yük ve sargı donatı oranının değişiminin, betonarme kolonların moment-eğrilik davranışı üzerinde önemli bir etkiye sahip olduğu gözlenmiştir. Çatlamış kesitin etkin rijitliği sabit olmasa da, sargı donatı oranı ve kesit üzerine etki eden eksenel kuvvet gibi parametrelere bağlı olarak değişmektedir.

Effect of Confining Reinforcement and Axial Load Level on Curvature Ductility and Effective Stiffness of Reinforced Concrete Columns

The correct estimate of curvature ductility of reinforced concrete members has always been an attractive subject of study as it engenders a reliable estimate of the capacity of buildings under seismic loads. In this study, the effect of the material model, axial load and transverse reinforcement ratio on the behavior of reinforced concrete columns were analytically investigated. Squared cross-section column models have been designed. The behavior of the columns were evaluated from the moment-curvature relation by taking the nonlinear behavior of the materials into account. The moment-curvature relationships for different axial load levels and transverse reinforcement ratios of the reinforced concrete column cross-sections were obtained considering the Mander confined model. The examined effects of the parameters on the column behavior were evaluated in terms of the strength of the cross-section, ductility and effective stiffness. In the designed column cross-sections, different parameters effecting the moment-curvature relationships, ductility and effective stiffness were calculated and compared. It is observed that the variation of the axial load and transverse reinforcement ratio have an important effect on the moment-curvature behavior, ductility and effective stiffness of the reinforced concrete columns. Although the effective stiffness of the cracked section is not constant, it varies depends on parameters such as the confining reinforcement and axial force acting on the section.

___

  • [1] Ucar, T., Merter, O., and Duzgun, M., “Determination of lateral strength and ductility characteristics of existing mid-rise RC buildings in Turkey”, Computers and Concrete, 2015, 16 (3), 467-485. DOI: doi.org/10.12989/cac.2015.16.3.467.
  • [2] Dok, G., Ozturk, H., and Demir, A., “Determining Moment-Curvature Relationship of Reinforced Concrete Columns”, The Eurasia Proceedings of Science, Technology, Engineering and Mathematics (EPSTEM), 2017, 1, 52-58.
  • [3] Youcef, S. Y., And Chemrouk, M., “Curvature Ductility Factor of Rectangular Sections Reinforced Concrete Beams”, World Academy of Science, International Journal of Civil and Environmental Engineering, 2012, 6 (11), 971-976. DOI: doi.org/10.5281/zenodo.1334117.
  • [4] Arslan, G., and Cihanli, E., “Curvature ductility prediction of reinforced High-strength concrete beam sections”. Journal of Civil Engineering and Management, 2010, 16 (4), 462-470. DOI: doi.org/10.3846/jcem.2010.52.
  • [5] Caglar, N., Demir, A., Ozturk, H., and Akkaya, A., “A new approach to determine the moment-curvature relationship of circular reinforced concrete columns”, Computers and Concrete, 2015a, 15 (3), 321-335. DOI: doi.org/10.12989/cac.2015.15.3.321.
  • [6] Petschke, T., Corres, H., Ezeberry, J. I., Pérez, A., and Recupero, A., “Expanding the classic moment-curvature relation by a new perspective onto its axial strain”, Computers and Concrete, 2013, 11 (6), 515-529. DOI: doi.org/10.12989/cac.2013.11.6.515.
  • [7] Foroughi, S., and Yuksel, S. B., “Moment Curvature Relationship of Square Columns”, International Congress on Engineering and Architecture, (ENAR), Alanya, Turkey, 2018, 681-688.
  • [8] Pique, J. R,. and Burgos, M., “Effective Rigidity of Reinforced Concrete Elements in Seismic Analysis and Design”, The 14th World Conference on Earthquake Engineering 12-17 October, Beijing, China, 2008.
  • [9] Vidović, D., Grandić, D., and Šćulac, P., “Effective Stiffness for Structural Analysis of Buildings in Earthquake”, 4th International Conference Civil Engineering-Science and Practice, Žabljak, 2012, 811-818.
  • [10] Çaglar, N., Demir, A., Özturk, H., and Akkaya, A., “A Simple Formulation for Effective Flexural Stiffness of Circular Reinforced Concrete Columns”, Engineering Applications of Artificial Intelligence, 2015b, 38, 79-87. DOI: doi.org/10.1016/j.engappai.2014.10.011.
  • [11] Bedirhanoglu, I., and Ilki, A., “Theoretical Moment-Curvature Relationships for Reinforced Concrete Members and Comparison with Experimental Data”, Sixth International Congress on Advances in Civil Engineering, 6-8 October 2004 Bogazici University, Istanbul, Turkey, 2004, 231-240. [12] Foroughi, S., and Yuksel, S. B., “Investigation of the Moment-Curvature Relationship for Reinforced Concrete Square Columns”, Turkish Journal of Engineering (TUJE), 2020a, 4(1), 36-46. DOI: doi.org/10.31127/tuje.571598.
  • [13] Foroughi, S., and Yüksel, S. B., “Analytıcal Investıgatıon of Curvature Ductılıty of Reınforced Concrete Columns”, Uludağ University Journal of The Faculty of Engineering, 2020b, 25 (1), 27-38. DOI: doi.org/10.17482/uumfd.510862.
  • [14] Baran, M., ve Dinçer, S., “Fretli Kolonlarla İlgili Deneysel Bir Çalışma”, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 2011, 26 (29, 389-399.
  • [15] Kiracı, S., Erdem, R. T., ve Bağcı, M., “Betonarme Bir Elemanda Egrilik Sünekliğinin İncelenmesi”, Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 2010, 6 (29, 141-154. DOI: doi.org/10.18466/cbufbe.03666.
  • [16] Jun, J., and Hui, W., “The Relationship Between Moment and Curvature and the Elastic-Plastic Seismic Response Analysis of High Pier Section”, The Open Mechanical Engineering Journal, 2015, 9 (1), 892-899. DOI: doi.org/10.2174/1874155X01509010892.
  • [17] Aydemir, C., Ve Zorbozan, M., “Betonarme Kolonların Olası Eğilme Momenti Kapasitelerinin Belirlenmesi İçin Bir Yöntem”, İMO Teknik Dergi, 2012, 23 (112), 5903-5930.
  • [18] Kumar, C. M. R., Choudhary, V., Narayan, K S B., and D. Reddy, V., “Moment Curvature Characteristics for Structural Elements of RC Building”, Journal on Today’s Ideas - Tomorrow’s Technologies, 2014, 2 (1), 13-29. DOI: doi.org/10.15415/jotitt.2014.21002.
  • [19] Sheikh, M. N., Tsang, H. H., McCarthy, T. J. and Lam, N. T. K., “Yield curvature for seismic design of circular reinforced concrete columns”, Magazine of Concrete Research, 2010, 62 (10), 741–748. DOI: doi.org/10.1680/macr.2010.62.10.741.
  • [20] SAP2000, Structural Software for Analysis and Design, Computers and Structures, Inc, USA.
  • [21] Mander, J. B., Priestley, M. J. N., and Park, R., “Theoretical stress-strain model for confined concrete”, Journal of Structural Engineering, 1988, 114 (8), 1804-1826. DOI: doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804).
  • [22] TS500., “Betonarme Yapıların Tasarım ve Yapım Kuralları”, Türk Standardları Enstitüsü, 2000, Ankara, Türkiye.
  • [23] TBDY., “Türkiye Bina Deprem Yönetmeliği”, T.C. Bayındırlık ve İskân Bakanlığı, 2018, Ankara, Türkiye.