ÇEVRİMİÇİ ÖĞRENME ORTAMINDAKİ FARKLI ÖĞRENCİ PROFİLLERİNİN KÜMELEME YÖNTEMİ iLE BELİRLENMESİ

Bu çalışmanın amacı, çevrimiçi öğrenme ortamında benzer davranış örüntüsü sergileyen farklı öğrenci gruplarının kümeleme yöntemi ile belirlenmesidir. Çalışma, Türkiye'de bir devlet üniversitesinde Bilgisayar ve Öğretim Teknolojileri Eğitimi Bölümü'nde Bilgisayar Donanımı dersine kayıtlı 76 üniversite ikinci sınıf öğrencisi ile yürütülmüştür. Öğrenciler 14 hafta süresince yüz yüze derslere ek olarak çevrimiçi öğrenme ortamında, yansıma yazma, tartışma, soru-cevap, kaynak takibi vb. aktiviteler gerçekleştirmişlerdir. Analizlerde kullanılan veriler bu ortamın veri tabanından elde edilmiştir. Veriler iki farklı kümeleme algoritması ile analiz edilmiş ve sonuçları karşılaştırılmıştır. Aynı zamanda elde edilen farklı öğrenci gruplarının akademik performansları incelenerek etkileşim düzeyi ile akademik performans arasındaki ilişki analiz edilmiştir. Araştırma sonuçları öğrencilerin çevrimiçi öğrenme ortamındaki davranış örüntülerine göre üç farklı kümeye ayrılabileceğini göstermiştir. Bu kümelerin isimlendirilmesi konusunda ise iki farklı yaklaşım izlenmiştir. Kümeler, her bir kümede yer alan öğrencilerin aktivite düzeylerine göre (Çok aktif, Aktif, Aktif olmayan) ve öğrencilerin akademik performanslarına göre (Yüksek öğrenenler, Orta öğrenenler, Düşük öğrenenler) tanımlanmıştır.

IDENTIFYING DIFFERENT STUDENT PROFILES IN AN ONLINE LEARNING ENVIRONMENT WITH CLUSTER ANALYSIS

The purpose of this study is to explore how to group students who exhibit similar behavior patterns in an online learning environment via clustering. Relationships between these clusters and students' academic performance in each cluster were examined, as well. The study group consisted of 76 university students studying at the Computer Education and Instructional Technology Department at a state university in Turkey. In addition to the face to face classes during the course of 14 weeks, the students conducted several activities (writing reflections, participating in discussions, following course resources, etc.) in the online learning environment. The results of the cluster analysis indicated that students were ideally divided into three different groups according to the activities carried out in the online learning environment. Regarding the labeling of these clusters, two different methods were used. Firstly, the finalized clusters were named according to the students' activity levels (Non-active, Active, Very active). Then, these clusters were named with regards to students' academic performance (Low learners, Moderate learners, High learners).

___

  • Akçapınar, G., Cosgun, E. ve Altun, A. (2011). Prediction of Perceived Disorientation in Online Learning Environment with Random Forest Regression. Paper presented at the Proceedings of the 4th International Conference on Educational Data Mining., July 6- 8, Eindhoven, Netherlands.
  • Ali, L., Asadi, M., Gasevic', D., Jovanovic', J. ve Hatala, M. (2013). Factors influencing beliefs for adoption of learning analytics tool: An empirical study. Computers Education, 62(0), 130-148. doi: http://dx.doi.org/10.1016/j.compedu.2012.10.023
  • Amershi, S. ve Conati, C. (2009). Combining Unsupervised and Supervised Machine Learning to Build User Models for Exploratory Learning Environments. Journal of Educational Data Mining, 1(1), 71-81.
  • Baker, R. J. d., Corbett, A., Koedinger, K. ve Roll, |. (2006). Generalizing Detection of Gaming the System Across Tutoring Curriculum. In M. Ikeda, K. Ashley ve T.-W. Chan (Eds.), Intelligent Tutoring Systems (Vol. 4053, pp. 402-411): Springer Berlin Heidelberg.
  • Beal, C. R., Qu, L. ve Lee, H. (2006). Classifying learner engagement through integration of multiple data sources. Paper presented at the Proceedings of the 21$t national conference on Artificial intelligence Volume 1, Boston, Massachusetts.
  • Bienkowski, M., Feng, M. ve Means, B. (2012). Enhancing Teaching and Learning Through Educational Data Mining and Learning Analytics: An Issue Brief. Washington, D.C.
  • Bouchet, F., Harley, J., Trevors, G. ve Azevedo, R. (2013). Clustering and profiling students according to their interactions with an intelligent tutoring system fostering selfregulated learning. Journal of Educational Data Mining, 5(2).
  • Cavalcanti, E. R., Pires, C. E. S., Cavalcanti, E. P. ve Pires, V. F. (2012). Detection and Evaluation of Cheating on College Exams using Supervised Classification. Informatics in Education, 11(2), 169-190.
  • Chien-Sing, L. ve Singh, Y. P. (2004, 30 Aug.-1 Sept. 2004). Student modeling using principal component analysis of SOM clusters. Paper presented at the Advanced Learning Technologies, 2004. Proceedings. IEEE International Conference on.
  • Cristobal, R., Sebastian, V., Mykola, P. ve Ryan, S. J. D. B. (2010). Introduction Handbook of Educational Data Mining (pp. 1-6): CRC Press.
  • Garcia, E., Romero, C., Ventura, S. ve de Castro, C. (2011). collaborative educational association rule mining tool. The Internet and Higher Education, 14(2), 77-88. doi: 10.1016/j.iheduc.2010.07.006
  • Gasevic', D., Dawson, S., Rogers, T. ve Gasevic, D. (2016). Learning analytics should not promote one size fits all: The effects of instructional conditions in predicting academic success. The Internet and Higher Education, 28, 68-84. doi: http://dx.doi.org/10.1016/j.iheduc.2015.10.002
  • Greller, W. ve Drachsler, H. (2012). Translating Learning into Numbers: Generic Framework for Learning Analytics. Educational Technology Society, 15 %6(3), 42-57.
  • Hâmâlâinen, W. ve Vinni, M. (2010). Classifiers for Educational Data Mining Handbook of Educational Data Mining (pp. 57-74): CRC Press.
  • Lopez, M. I., Luna, J. M., Romero, C. ve Ventura, S. (2012). Classification via clustering for predicting final marks based on student participation in forums. Paper presented at the 5th International Conference on Educational Data Mining, EDM 2012, Chania, Greece.
  • MacQueen, J. (1967, 1967). Some methods for classification and analysis of multivariate observations. Paper presented at the Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statistics, Berkeley, Calif.
  • Marquez-Vera, C., Cano, A., Romero, C. ve Ventura, S. (2013). Predicting student failure at school using genetic programming and different data mining approaches with high dimensional and imbalanced data. Applied Intelligence, 38(3), 315-330. doi: 10.1007/510489-012-0374-8
  • Moreno, L., Gonzalez, C., Castilla, |., Gonzalez, E. ve Sigut, J. (2007). Applying constructivist and collaborative methodological approach in engineering education. Computers Education, 49(3), 891-915. doi: http://dx.doi.org/10.1016/].compedu.2005.12.004
  • Nisbet, R., Elder, J. ve Miner, G. (2009). Chapter Basic Algorithms for Data Mining: Brief Overview. In R. Nisbet, J. Elder ve G. Miner (Eds.), Handbook of Statistical Analysis and Data Mining Applications (pp. 121-150). Boston: Academic Press.
  • Pelleg, D. ve Moore, A. W. (2000). X-means: Extending K-means with Efficient Estimation of the Number of Clusters. Paper presented at the Proceedings of the Seventeenth International Conference on Machine Learning.
  • Pena-Ayala, A. (2014). Educational data mining: survey and data mining-based analysis of recent works. Expert Systems with Applications, 41(4, Part 1), 1432-1462. doi: http://dx.doi.org/10.1016/j.eswa.2013.08.042
  • Romero, C., Espejo, P. G., Zafra, A., Romero, J. R. ve Ventura, S. (2013). Web usage mining for predicting final marks of students that use Moodle courses. Computer Applications in Engineering Education, 21(1), 135-146. doi: 10.1002/cae.20456
  • Romero, C., Löpez, M.-|., Luna, J.-M. ve Ventura, S. (2013). Predicting students' final performance from participation in on-line discussion forums. Computers Education, 68, 458-472. doi: http://dx.doi.org/10.1016/].compedu.2013.06.009
  • Romero, C. ve Ventura, S. (2010). Educational Data Mining: Review of the State of the Art. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 40(6), 601-618. doi: 10.1109/TSMCC.2010.2053532
  • Romero, C. ve Ventura, S. (2013). Data mining in education. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 3(1), 12-27. doi: 10.1002/widm.1075
  • Romero, C., Ventura, S. ve Garcia, E. (2008). Data mining in course management systems: Moodle case study and tutorial. Computers Education, 51(1), 368-384. doi: http://dx.doi.org/10.1016/j.compedu.2007.05.016
  • Siemens, G. ve Baker, R. S. J. d. (2012). Learning Analytics and Educational Data Mining: Towards Communication and Collaboration. Paper presented at the Proceedings ofthe 2nd International Conference on Learning Analytics and Knowledge.
  • Valdiviezo, P., Reâtegui, R. ve Sarango, M. (2013). Student Behavior Patterns in Virtual Learning Environment. Paper presented at the Eleventh LACCEI Latin American and Caribbean Conference for Engineering and Technology (LACCEI'2013), August 14 16, 2013 Cancun, Mexico.
  • Witten, |. H., Frank, E.ve Hall, M. A. (2011). Data Mining: Practical Machine Learning Tools and Techniques: Morgan Kaufmann Publishers Inc.
Eğitim Teknolojisi Kuram ve Uygulama-Cover
  • ISSN: 2147-1908
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2011
  • Yayıncı: Tolga Güyer