IgG'nin tayini için kapasitif bir biyosensör geliştirilmesi

Amaç: COVID-19 geçtiğimiz bir yıl içerisinde oldukça fazla kişiye bulaşmış ve tüm hayatımızı değiştirmiştir. COVID-19 pandemisi ile artan arge çalışmalarına ek olarak geliştirilen kapasitif IgG biyosensörü tarafımızca başarılı bir şekilde geliştirilmiştir. Gereç ve Yöntem: Ölçümün kapasitif olması sadece protein-A’ya bağlanan IgG moleküllerinin ikincil bir işaretçi moleküle ihtiyaç duymaması ve hızlı ölçümü ile direkt olarak ölçülmesi ölçümün kolaylığını yansıtmaktadır. Altın elektrot üzerine sırasıyla sistamin, PAMAM ve protein-A immobilizasyonu gerçekleştirilmiştir. Bulgular: Ölçüm süresini 400 saniyeye indirerek 7 dakika içerisinde ölçüm yapabilmek son derece iyidir. IgG normal değerlerinin, 5,6-18 mg/mL aralığında olması, olası COVID-19 geçirilmesi sonrası artan değerlerin de ölçülebilirliğini, 5-70 mg/mL aralığını ölçebildiği için sağlayabilmektedir. Düzlemsel olarak ölçüm yani lineer ölçümün doğruluğu ise 0,9908 olarak hesaplanmış bu değer de 1 sayısına çok yakın olduğundan, ölçümün linearitesi uygun olarak değerlendirilmiştir. LOD ve LOQ değerleri sırasıyla 1,5 mg/mL ve 4,54 mg/mL olarak bulunmuştur. Sonuç: Satın alınan serum örneklerine eklenen IgG ölçümünde ise % 5’ten daha az bir sapma olması da seçiciliğin yüksek olduğunu göstermektedir. Bu şekilde yeni nesil bir ölçüm sistemi geliştirilmiştir.

Development of a capacitive biosensor for detection of IgG

Aim: COVID-19 has infected quite a lot of people over the past year and has changed our entire lives. The capacitive IgG biosensor, developed in addition to the increasing R&D studies with the COVID-19 pandemic, has been successfully developed by us. Materials and Methods: The capacitive measurement reflects the ease of measurement, only IgG molecules binding to protein-A do not need a secondary marker molecule and direct measurement with rapid measurement. Cystamine, PAMAM and protein-A immobilization was performed on the gold electrode, respectively. Results: It is extremely good to be able to measure within 7 minutes by reducing the measurement time to 400 seconds. The normal values of IgG are in the range of 5.6-18 mg / mL, and the measurability of the increased values after possible COVID-19 infection can be measured in the range of 5-70 mg / mL. The accuracy of the linear measurement, that is, the linear measurement, was calculated as 0.9908, and this value was very close to the number 1, so the linearity of the measurement was evaluated as appropriate. LOD and LOQ values were found to be 1.5 mg / mL and 4.54 mg / mL, respectively. Conclusion: A deviation of less than 5% in the IgG measurement added to the purchased serum samples indicates that the selectivity is high. In this way, a new generation measurement system has been developed.

___

  • 1. Bournazos S, Chow SK, Abboud N, Casadeval A, Ravetch J V. Human IgG Fc domain engineering enhances antitoxin neutralizing antibody activity. J Clin Invest [Internet]. 2014; 124 (2): 725–9. Available from: https://pubmed.ncbi.nlm.nih.gov/24401277/
  • 2. Schur PH. IgG subclasses - a a review. Vol. 58, Annals of Allergy. 1987. p. 89–99.
  • 3. Nimmerjahn F, Ravetch J V. Immunology: Divergent immunoglobulin G subclass activity through selective Fc receptor binding. Science (80- ) [Internet]. 2005; 310 (5753): 1510–2. Available from: https://science.sciencemag.org/content/310/5753/1510
  • 4. Lock RJ, Unsworth DJ. Immunoglobulins and immunoglobulin subclasses in the elderly. Ann Clin Biochem. 2003; 40 (2): 143–8.
  • 5. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020; 382 (8): 727–33.
  • 6. Wei X, Li X, Cui J. Evolutionary perspectives on novel coronaviruses identified in pneumonia cases in China. Vol. 7, National Science Review. Oxford University Press; 2020. p. 239–42.
  • 7. Weiss SR, Leibowitz JL. Coronavirus pathogenesis [Internet]. Vol. 81, Advances in Virus Research. Academic Press Inc.; 2011. p. 85–164. Available from: https://pubmed.ncbi.nlm.nih.gov/22094080/
  • 8. Biosensors : Fundamentals and Applications. Oxford University Press; 1987.
  • 9. Berggren C, Bjarnason B, Johansson G. Capacitive Biosensors. Electroanalysis [Internet]. 2001 Mar 1 [cited 2021 Apr 21]; 13 (3): 173–80. Available from: https://onlinelibrary.wiley.com/doi/10.1002/1521-4109(200103)13:3%3C173::AID-ELAN173%3E3.0.CO;2-B
  • 10. Daniels JS, Pourmand N. Label-free impedance biosensors: Opportunities and challenges [Internet]. Vol. 19, Electroanalysis. Electroanalysis; 2007. p. 1239–57. Available from: https://pubmed.ncbi.nlm.nih.gov/18176631/
  • 11. Mattiasson B, Hedström M. Capacitive biosensors for ultra-sensitive assays. TrAC Trends Anal Chem [Internet]. 2015; Available from: http://linkinghub.elsevier.com/retrieve/pii/S0165993615301138
  • 12. Uygun ZO, Dilgin Y. A novel impedimetric sensor based on molecularly imprinted polypyrrole modified pencil graphite electrode for trace level determination of chlorpyrifos. Sensors Actuators, B Chem [Internet]. 2013 [cited 2021 Apr 12]; 188: 78–84. Available from: http://dx.doi.org/10.1016/j.snb.2013.06.075
  • 13. Uygun ZO, Şahin Ç, Yılmaz M, Akçay Y, Akdemir A, Sağın F. Fullerene-PAMAM(G5) composite modified impedimetric biosensor to detect Fetuin-A in real blood samples. Anal Biochem [Internet]. 2018; 542: 11–5. Available from: https://www.sciencedirect.com/science/article/pii/S0003269717304542
Ege Tıp Dergisi-Cover
  • ISSN: 1016-9113
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1962
  • Yayıncı: Ersin HACIOĞLU