Sulu Çözeltilerden Organik Boyaların Giderimi İçin Selüloz Nanokristal Katkılı Aljinat Adsorbanın Üretilmesi ve Boya Giderim Veriminin Araştırılması

Hızlı nüfus artışı ve endüstriyelleşme ile her geçen gün artan su ihtiyacı ve atıksuların su kaynaklarına verdiği zararlar göz önüne alındığında, özellikle endüstriyel atıksuların deşarj öncesi arıtılması büyük önem taşımaktadır. Bu endüstriyel atıksuların başında yüksek su tüketimi ve boyar madde konsantrasyonu ile tekstil endüstrisi gelmektedir. Boyar maddelerin atıksulardan uzaklaştırılması için çeşitli fiziksel, kimyasal ve biyolojik arıtma yöntemleri kullanılmaktadır. Bu yöntemler arasında hem işletme hem performans açısından en kolay ve verimli yöntem adsorpsiyon olarak bilinmektedir. Ancak adsorbanın üretilmesi ve rejenerasyonu, yüksek maliyet ve enerji gerektirdiğinden, adsorpsiyon prosesinde sürdürülebilir malzemeye dayalı alternatif düşük maliyetli adsorbanların geliştirilmesi büyük önem taşımaktadır. Bu çalışmada yenilikçi ve çevre dostu selüloz nanokristal (SNK) katkılı aljinat adsorbanının üretilmesi ve metilen mavisi gideriminde kullanılması araştırılmıştır. Bu amaçla SNK katkılı aljinat bilyelerin metilen mavisi giderim performansının belirlenmesi için farklı adsorban konsantrasyonu ve farklı boyar madde konsantrasyonlarında kesikli adsorpsiyon deneyleri gerçekleştirilmiştir. En yüksek metilen mavisi giderim verimi, 100 mg/L boyar madde konsantrasyonu ve 0,5 g adsorban/50 mL boyar madde çözeltisi şartlarında gerçekleştirilen çalışma ile %35 olarak bulunmuştur. Ayrıca üretilen adsorbanın yeniden kullanılabilirliğinin araştırılması için bir seri adsorpsiyon-desorpsiyon çalışması gerçekleştirilmiş ve adsorbanın rejenerasyonu incelenmiştir.

Production of Cellulose Nanocrystalline Additive Alginate Adsorbent for the Removal of Organic Dyes from Aqueous Solutions and Investigation of Dye Removal Efficiency

Considering increasing water demand with rapid population growth and industrialization and the damage caused by wastewater to water resources, it is of great importance to treat industrial wastewater before discharge. The textile industry with high water consumption and dye concentration is one of these industrial wastewaters. Various physical, chemical, and biological treatment methods are used to treat dyes from wastewater. Among these methods, the easiest and most efficient method in terms of both operation and performance is known as adsorption. However, since the production and regeneration of the adsorbent requires high cost and energy, it is of great importance to develop alternative low-cost adsorbents based on sustainable materials in the adsorption process. In this study, the production of an innovative and environmentally friendly cellulose nanocrystal (CNC) blended with alginate adsorbent and its use in methylene blue removal were investigated. For this purpose, batch adsorption experiments at different adsorbent concentrations and different dye concentrations were performed to determine the methylene blue removal performance of CNC-added alginate beads. The highest methylene blue removal efficiency was found to be 35% with the study performed under 100 mg/L dye concentration and 0.5 g adsorbent/50 mL dye solution. In addition, a series of adsorption-desorption studies were carried out to investigate the reusability of the adsorbent and the regeneration of the adsorbent was investigated.

___

  • [1] S. Ahuja, Handbook of water purity and quality, 1st edition, New York, USA: Elsevier, 2009, pp. 456.
  • [2] H. Metivier-Pignon, C. Faur-Brasquet and P. Le Cloirec, “Adsorption of dyes onto activated carbon cloths: approach of adsorption mechanisms and coupling of ACC withultrafiltration to treat coloured wastewaters,” Separation and Purification Technology, vol. 31, no. 1, pp. 3–11, 2003.
  • [3] M. Rafatullah, O. Sulaiman, R. Hashim and A. Ahmad, “Adsorption of methylene blue on low-cost adsorbents: a review,” Journal of Hazardous Material, vol. 177, no. 1-3, pp. 70–80, 2010.
  • [4] G. Crini, “Non-conventional low-cost adsorbents for dye removal: a review,” Bioresource Technology, vol. 97, vol. 9, pp. 1061–1085, 2006.
  • [5] Y. Ho and G. McKay, “Sorption of dyes and copper ions onto biosorbents,” Process Biochemistry, vol. 38, no. 7, pp. 1047–1061, 2003.
  • [6] A. Jain, V. Gupta and A. Bhatnagar, “Utilization of industrialwaste products as adsorbents for the removal of dyes,” Journal of Hazardous Material, vol. 101, no. 1, pp. 31–42, 2003.
  • [7] P. Sharma, H. Kaur, M. Sharma and V. Sahore, “A review on applicability of naturally available adsorbents for the removal of hazardous dyes from aqueous waste,” Environmental Monitoring and Assessment, vol. 183, no. 1-4, pp.151–195, 2011.
  • [8] X. He, K. B. Male, P. N. Nesterenko, D. Brabazon, B. Paull and J. H. T Luong, “Adsorption and desorption of methylene blue on porous carbon monoliths and nanocrystalline cellulose,” ACS Applied Materials & Interfaces, vol. 5, no. 17, pp. 8796–8804, 2013.
  • [9] R. Batmaz, N. Mohammed, M. Zaman, G. Minhas, R. M. Berry and K. C. Tam, “Cellulose nanocrystals as promising adsorbents for the removal of cationic dyes,” Cellulose, vol. 21, no. 3, pp.1655–1665, 2014.
  • [10] B. L. Peng, N. Dhar, H. L. Liu and K. C. Tam, “Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective,” Canadian Journal of Chemical Engineering, vol. 89, no. 5, pp. 1191–1206, 2011.
  • [11] M. Kurecic and M. S. Smole, “Polymer nanocomposite hydrogels for water purification”, Nanocomposites - New Trends and Developments, Croatia, Intechopen, 2012, pp. 161-185.
  • [12] K. Y. Lee and D. J. Mooney, “Alginate: properties and biomedical applications,” Progress in Polymer Science, vol. 37, no. 1, pp.106–126, 2012.
  • [13] V. Rocher, A. Bee, J-M. Siaugue and V. Cabuil, “Dye removal from aqueous solution by magnetic alginate beads crosslinked with epichlorohydrin,” Journal of Hazardous Material, vol. 178, no, 1-3, pp. 434–439, 2010.
  • [14] J. Fan, Z. Shi, L. Min, H. Li and J. Yin, “Mechanically strong graphene oxide/sodium alginate/polyacrylamide nanocomposite hydrogel with improved dye adsorption capacity,” Journal of Materials Chemistry A, vol. 25, no. 1, pp. 7433–7443, 2013.
  • [15] S. Biswas, S. S. Mohapatra, U. Kumari, B. C. Meikap, T. K. Sen, “Batch and continuous closed circuit semi-fluidized bed operation: Removalof MB dye using sugarcane bagasse biochar and alginate composite adsorbents,” Journal of Environmental Chemical Engineering, vol. 8, no. 1, pp. 103637, 2020.
  • [16] J.-C. Kim, J. Kim, J. Park, J.-K. Oh, I.-G. Choi, H. W. Kwak, “Highly efficient and sustainable alginate/carboxylated lignin hybrid beads as adsorbent for cationic dye removal,” Reactive and Functional Polymers, vol. 161, no.1, 104839, 2021.
  • [17] N. Mohammed, N. Grishkewich, R. M. Berry and K. C. Tam, “Cellulose nanocrystal–alginate hydrogel beads as novel adsorbents for organic dyes in aqueous solutions,” Cellulose, vol. 22, no. 6, pp. 3725–3738, 2015.
  • [18] M. Ma, Z. Liu, L. Hui, Z. Shang, S. Yuan, L Dai, P. Liu, X. Liu and Y. Ni, “Lignin-containing cellulose nanocrystals/sodium alginate beads as highly effective adsorbents for cationic organic dyes,” International Journal of Biological Macromolecules, vol. 139, no. 1, pp. 640-646, 2019.
Düzce Üniversitesi Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Düzce Üniversitesi Fen Bilimleri Enstitüsü