Soğuk İklim Bölgelerinde İnce Taneli Zeminlerin Fiziksel ve Mekanik Davranışının İncelenmesi

Donma-çözülme döngülerinin çeşitli zeminlerin fiziksel ve mekanik özellikleri üzerindeki etkisinin incelenmesi ve ortaya konulması, soğuk iklim bölgelerindeki temel sistemleri, yol yapımı ve toprak işleri uygulamaları bakımından önem arz etmektedir. Bu araştırmada, yüksek plastisiteli ince taneli zeminin yükseklik ve su içeriklerindeki değişimleri farklı sayıda donma-çözülme döngülerinden (0, 2, 5 ve 11) sonra incelenmiş ve konsolidasyonsuz-drenajsız (UU) üç eksenli basınç testleri altındaki davranışlarına ilişkin deneysel sonuçlar sunulmuştur. Zemin numunelerinin yükseklikleri maksimum donma-çözülme döngüsünden sonra %2,44 oranında artarken, su içerikleri %4,36 oranında azalmıştır. Maksimum donma-çözülme döngüsünden sonra, zeminlerin üç eksenli UU basınç dayanımlarında %19-%40 arası, elastisite modüllerinde %30-%40 arası ve kohezyonunda %50,28 oranında azalma görülürken, içsel sürtünme açısında %4,85 oranında artış görülmüştür. Çalışmanın bulguları ince daneli zeminlerde donma-çözülmenin zayıflatıcı ve yapısında bozucu etkilerini doğrular nitelikte olup, özellikle incelenen soğuk iklim bölgesine ait zeminlerin üzerinde yapılacak altyapıların tasarım değerlendirmesi ve donma-çözülme kaynaklı problemlere karşı önlemler için bilimsel bir temel sağlayabilecektir.

Investigation of the Physical and Mechanical Behaviors of Fine-Grained soils in Cold Regions

Investigation and revealing the effect of freeze-thaw cycles on the physical and mechanical properties of various soils is important in terms of foundation systems, road construction and earthwork applications in cold regions. In this study, the changes in height and water content of high plasticity fine-grained soil were investigated after different number of freeze-thaw cycles (0, 2, 5, and 11) and experimental results on their behavior under unconsolidated-undrained (UU) triaxial compression tests are presented. After the maximum freeze-thaw cycle, while the heights of the soil samples increased by 2.44%, their water content decreased by 4.36%. Moreover, after the maximum freeze-thaw cycle, the triaxial UU compressive strength of the soils decreased by 19%-40%, the elasticity modules decreased by 30%-40%, the cohesion decreased by 50.28%, while the internal friction angle increased by 4.85%. The findings of the study confirm the weakening and deteriorating effects of freeze-thaw cycles in fine-grained soils, and may provide a scientific basis for the design evaluation of infrastructures to be built on soils belonging to the cold regions in this study and to prevent against freeze-thaw problems.

___

  • [1]L. Sun, X. Chang, X. Yu, G. Jia, L. Chen, Y. Wang, and Z. Liu, “Effect of freeze-thaw processes on soil water transport of farmland in a semi-arid area,” Agricultural Water Management, vol. 252, 106876, 2021.
  • [2]X. Lu, F. Zhang, W. Qin, H. Zheng, and D. Feng, “Experimental investigation on frost heave characteristics of saturated clay soil under different stress levels and temperature gradients,” Cold Regions Science and Technology, vol. 192, 103379, 2021.
  • [3]Y. Lai, W. Pei, M. Zhang, and J. Zhou, “Study on theory model of hydro-thermal-mechanical interaction process in saturated freezing silty soil,” International Journal of Heat and Mass Transfer, vol. 78, pp. 805–819, 2014.
  • [4]A. Li, F. Niu, C. Xia, C. Bao, and H. Zheng, “Water migration and deformation during freeze-thaw of crushed rock layer in Chinese high-speed railway subgrade: Large scale experiments,” Cold Regions Science and Technology, vol. 166, 102841, 2019.
  • [5]Z. Lin, F. Niu, X. Li, A. Li, M. Liu, J. Luo, and Z. Shao, “Characteristics and controlling factors of frost heave in high-speed railway subgrade, Northwest China,” Cold Regions Science and Technology, vol. 153, pp. 33-44, 2018.
  • [6]K. Hazirbaba, “Effects of freeze-thaw on settlement of fine grained soil subjected to cyclic loading,” Cold Regions Science and Technology, vol. 160, pp. 222-229, 2019.
  • [7]L. Tang, S. Tian, X. Ling, and G. Li, “Effect of freeze-thaw cycles on the strength of base course materials used under China’s high-speed railway line,” Journal of Cold Regions Engineering, vol. 31, no.4, pp. 1-9, 2017.
  • [8]Z. Lu, S. Xian, H. Yao, R. Fang, and J. She, “Influence of freeze-thaw cycles in the presence of a supplementary water supply on mechanical properties of compacted soil,” Cold Regions Science and Technology, vol. 157, pp. 42-52, 2019.
  • [9]H. B. Wei, L. L. Han, Q. L. Li, Z. Q. Li, and Y. P. Zhang, “Research on dynamic compressive stress response of new type filler subgrade in freezing and thawing processes,” Cold Regions Science and Technology, vol. 164, 102785, 2019.
  • [10]J. E. Aubert, and M. Gasc Barbier, “Hardening of clayey soil blocks during freezing and thawing cycles,” Applied Clay Science, vol. 65-66, pp. 1-5, 2012.
  • [11]Y. Zhang, W. Zhao, W. Ma, H. Wang, A. Wen, and P. Li, “Effect of different freezing modes on the water-heat-vapor behavior in unsaturated coarse-grained filling exposed to freezing and thawing,” Cold Regions Science and Technology, vol. 174, 103038, 2020.
  • [12]B. Tai, J. Liu, T. Wang, Y. Shen, and X. Li, “Numerical modelling of anti-frost heave measures of high-speed railway subgrade in cold regions,” Cold Regions Science and Technology, vol. 141, pp. 28-35, 2017.
  • [13]B. Tai, Q. Wu, Z. Zhang, and X. Xu, “Cooling performance and deformation behavior of crushed-rock embankments on the Qinghai-Tibet Railway in permafrost regions,” Engineering Geology, vol. 265, 105453, 2020.
  • [14]J. Gao, Y. Lai, M. Zhang, and D. Chang, “The thermal effect of heating two-phase closed thermosyphons on the high-speed railway embankment in seasonally frozen regions,” Applied Thermal Engineering, vol. 141, pp. 948-957, 2018.
  • [15]S. Ahmadi, H. Ghasemzadeh, and F. Changizi, “Effects of A low-carbon emission additive on mechanical properties of fine-grained soil under freeze-thaw cycles,” Journal of Cleaner Production vol. 304, 127157, 2021.
  • [16]X. Ling, S. Tian, L. Tang, and S. Li, “A damage-softening and dilatancy prediction model of coarse-grained materials considering freze-thaw effects,” Transportation Geotechnics, vol. 22, 100307, 2020.
  • [17]J. M. Konrad, and M. Samson, “Hydraulic conductivity of kaolinite-silt mixtures subjected to closed-system freezing and thaw consolidation,” Canadian Geotechnical Journal, vol. 37, no.4, 857e869, 2000.
  • [18]J. Qi, P. A. Vermeer, and G. Cheng, “A review of the influence of freeze-thaw cycles on soil geotechnical properties,” Permafrost and Periglacial Processes, vol. 17, no. 3, 245e252. 2006.
  • [19]A. Aldaood, M. Bouasker, and M.Al-Mukhtar, “Impact of freeze-thaw cycles on mechanical behaviour of lime stabilized gypseous soils,” Cold Regions Science and Technology, vol. 99, 38e45, 2014.
  • [20]P. A. G. Viran and A. Binal, “Effects of repeated freeze–thaw cycles on physico-mechanical properties of cohesive soils,” Arabian Journal of Geosciences, vol. 11, no. 250, pp. 1-13, 2018.
  • [21]E. Özgan, S. Ertürk ve S. Serin, “Donma ve çözülmenin kohezyonlu zeminlerin fiziksel özelliklerine etkisinin incelenmesi,” İleri Teknoloji Bilimleri Dergisi, c. 1, s. 1, ss. 7-16, 2012.
  • [22] Y. Zheng, W. Ma, and H. Bing,“Impact of freezing and thawing cycles on structure of soils and its mechanism analysis laboratory testing,” Rock and Soil Mechanics, vol. 36, no. 5, pp. 1282-1287, 2015.
  • [23]S. Leroueil, J. Tardif, M. Roy, P. La Rochelle, and J. M. Konrad, “Effects of frost on the mechanical behaviour of Champlain Sea clays,” Canadian Geotechnical Journal, vol. 28, no. 5, pp. 690-697, 2011.
  • [24]Y. Lu, S. H. Liu, E. Alonso, L. J. Wang, L. Xu, and Z. Li, “Volume changes and mechanical degradation of a compacted expansive soil under freeze-thaw cycles,” Cold Regions Science and Technology, vol. 157, pp. 206–214, 2019.
  • [25]L. Tang, S. Y. Cong, L. Geng, X. Z. Ling, and F. D. Gan, “The effect of freeze-thaw cycling on the mechanical properties of expansive soils,” Cold Regions Science and Technology, vol. 145, pp.197–207, 2018.
  • [26]A. Ş. Zaimoğlu, F. Hattatoğlu, ve R. K. Akbulut, “Yüke maruz ince daneli zeminlerin donma-çözülme davranışı,” Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 19, s. 3, ss. 117-120, 2013.
  • [27] Meteoroloji Genel Müdürlüğü. (2020, 11 Şubat). Kış mevsimi yağış değerlendirmesi [Online]. Erişim: https://www.mgm.gov.tr/veridegerlendirme/yagis-raporu.aspx?b=m.
  • [28]Standard test method for unconsolidated-undrained triaxial compressiontest on cohesive soils ASTM D2850-95, West Conshohocken, PA, 1999.
  • [29]D. Wang, W. Ma, Y. H. Niu, X. Chang, Z. Wen, “Effects of cyclic freezing and thawing on mechanical properties of Qinghai-Tibet clay,” Cold Regions Science and Technology, vol. 48, pp. 34-43, 2007.
  • [30]D. M. Wood, Soil behaviour and critical state soil mechanics, 1st ed., New York, USA: Cambridge University Press, 1990, pp. 43–53.
  • [31]M. Roustaei, A. Eslami, and M. Ghazavi, “Effects of freeze-thaw cycles on a fiber reinforced fine grained soil in relation to geotechnical parameters,” Cold Regions Science and Technology, vol. 120, pp. 127-137, 2015.
  • [32]N. Ogata, T. Kataoka, and A. Komiya, “Effect of freezing–thawing on the mechanical properties of soil,” In: Kinosita S, Fukuda M (Eds.), Proceedings of the 4th International Symposium on Ground Freezing, Japan, 5-7 August 1985, pp. 201-205.
  • [33]S. Atila Şahin, “Soğuk iklim bölgelerinde yüksek hızlı demiryolu altyapısının dinamik davranışlarının incelenmesi,” Yüksek lisans tezi, İnşaat Mühendisliği Bölümü, Fırat Üniversitesi, Elazığ, Türkiye, 2022.
Düzce Üniversitesi Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Düzce Üniversitesi Fen Bilimleri Enstitüsü